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 Abstract - This paper presents a new model for calculating the 

reliability of large electric networks with transmission constraints. 

Generation loss of load probability (LOLP) and expected unserved 

energy (EUE) are calculated with and without transmission 

constraints and displayed for the system and for each load area 

over a wide range of load levels.  A two step process first finds the 

cumulative probabilistic line flow distributions from incremental 

flows resulting from random generator failures and then performs 

load shedding as a heuristic process to remove line overloads. 

Convolution of states allows an extremely large number of 

generator states to be modeled in a reasonable amount of 

computation time.  Test results for a large network and for the 

IEEE Reliability Test System (RTS) are discussed in the paper. 
 

I.  INTRODUCTION 

 Large electric power networks today are highly 
interconnected through high voltage transmission lines to 
reduce costs and improve reliability.  The sharing of generation 
reserves greatly improves power supply reliability.  Economy 
energy transfers reduce operating costs.  By design, today’s 
systems have a high degree of freedom to dispatch scheduled 
generation. This also allows an extremely large number of 
unscheduled random generator outage states.  A network with 
200 generators has more than 10

60
 states in which the generators 

can randomly fail.  Most states have very small probabilities, 
but because of the large number of states, their collective effect 
on system reliability is significant.  The analysis of generator 
outages must be extended well beyond double contingency 
analysis [1,2]. 
 This paper presents a model for calculating the probabilistic 
transmission line power flows for the complete set of random 
and independent generation failure states on all the lines in a 
large nonreduced network.  Piecewise Quadratic (PQ) math [3] 
is used to efficiently calculate the numerous probabilistic line 
flow distributions and the system generation distribution [4]. 
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 Fig. 1 shows an example of the system generation 
distribution FG(x) for a 58197 MW system with 286 generators. 
FG(x) is the probability that generation outaged capacity will 
exceed x MW [5].  It also defines the generation loss of load 
probability (LOLP) at different MW load levels.  The integral 
of FG(x) from x to infinity gives the generation expected 
unserved energy (EUE) for a one hour period. Transmission 
constraints will increase FG(x) in value but it is always a 
monotone decreasing function. 
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Fig. 1.  Probability Outaged MW > x 

 

 The definition of FG(x) as the reliability of total system power 
supply is extended to mean the reliability of supply at all buses in 
the load flow.  Every bus receives a proportionate share of the 
total system generation capacity.  In this model loads are scaled 
to match each state’s MW generation capacity. The top state 
load flow is one in which all generators are on line.  As 
generators are outaged, loads are scaled downward to match 
available generation.  Each generation state has a unique set of 
line flows and a probability of being in that state.  The collection 
of all line flow states creates a set of line flow distributions. 
These distributions are used to estimate the changes to FG(x). 
 Linear incremental real power per unit line flow 
distributions are calculated for each line and generator outaged 
using a very tight tolerance load flow solution.  These 
distributions are stored in a file.  Load buses are given virtual 
generators equal to the load at each bus.  Rather than decrease 
loads, the virtual generation is added to each bus, effectively 
removing load.  The per unit line flow distributions are 
calculated and stored for all the virtual generators. 
 All combinations of real and virtual generation pairs are 
reviewed as candidates for load shedding.  A load shedding table 
(LST) is created for each line.  Load sheddings are executed as a 
heuristic to unload the overloaded lines and at the same time 
incrementally modify the FG(x) generation reliability function. 
 
 

II.  NOTATION 
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Ck , FORk  generator k unit MW rating, forced outage rate 
Dk , DFORk generator k MW derating, derating outage rate 
h    MW grid increment spacing for PQ functions 
EUE(x)  expected unserved energy in MWH for one hour 
FE(x)   exact generation cumulative distribution 
FG(x)   PQ generation cumulative distribution function 

F±j(x)   two PQ cumulative flow distributions for line j 
F(x,y)   2D cumulative distribution function 
F(x,y)   2D probability partial density function 
Gk    generator k discrete C, FOR and D, DFOR states 
G1+..+GNg  indicates convolution of discrete states, k=1...Ng 

Gk•FG   indicates PQ convolution of k’s states into FG(x) 

[Gk•FG] k=1, Ng indicates PQ convolution of all Gk for k=1...Ng 
Hj,k    p.u. line distribution for line j and generator k 
INT(x)   next lowest integer value of real number x 
Na    Number of load areas 
Ng    Number of generators 
Nt    Number of transmission lines and transformers 

Pr [X > x]  probability random variable X is > real number x 
Rj      the MW rating of line j 
sn     area n load+loss MW / total generation MW 
xoj    the top state (base case) line j MW power flow 
 
 

III.  PROCESS FLOW TO REACH A SOLUTION 

1. Read all data, scale loads to match total generation supply, 
 solve the load flow, and store the real power line flows.   
2. Calculate FG(x) which is the reliability of generation supply 
 without transmission constraints. 
3. Run incremental line flow (load flow) cases in which each 
 generator is outaged and store MW flows in Hj,k. 
4. Run virtual generation incremental cases; include in Hj,k. 
5. Adjust dominant Hj,k MW flows to improve linearity. 
6. Normalize the Hj,k table to each k’th source. 
7. Discard analysis on lines that will not overload at all. 

8. Calculate line flow distributions F±j(y). 
9. Discard analysis on lines with low overload probability. 
10. Choose line j with the highest probability of overload. 
11. Create a heuristic load shedding table (LST) for line j. 
12. Create a partial Fj(y) for line j using only the Hj,k flows 
 causing an increase in overload; ref. as increasing flows. 
13. Use this partial Fj(y) to initialize F(x,y). 
14. Convolve the decreasing line flows into F(x,y). 
15. Convert F(x,y) to a partial density function F(x,y). 
16. Select a generator-load from the LST to be reduced. 
17. Calculate the maximum MW reduction for this generator. 
18. Shift the F(x,y) states as a function of the load shedding. 
19. Calculate the incremental changes in FG(x). 
20. Estimate the reduction in loading of other overloaded lines. 
21. Repeat steps 17 through 21 until the one overloaded line is 
 no longer overloaded. 
22. Repeat steps 10 through 22 until there are no more 
 overloaded lines. 

IV.  EXACT CONVOLUTION METHOD 

 A procedure for calculating FE (x) is given.  The solution 
process is analytically exact and provides a basis for 
determining the error in the PQ convolution process [4].  The 
function FE (x) is a monotone decreasing cumulative distribution 
that gives the probability of any integer x megawatts or more of 
generation being out of service The typical network consists of 
two state and three state generators.  Gk generator failure states 
are defined in Table 1. 
 

Table 1.  Two State and Three State Definitions of Gk 

  Up State, Fail State     Up State, Derated State, Fail State 

     1−FORk ,  0    MW  (up)   1−FORk−DFORk ,   0   MW       (up) 

   Gk =   FORk    , Ck  MW (down)  or  Gk = DFORk       , Dk  MW   (derated) 

            FORk       ,  Ck  MW    (down). 

Then 

 FE(x)  =  Pr [G1+ G2+ G3+...+ GNg (outaged MW) > x ]   (1) 
 
where Pr is the probability all Gk random outage states is > x 
MW.  Eqn. 1 lacks the structure needed to describe how FE(x) is 
to be numerically calculated.  FE(x) is an array of discrete 
probabilities in one MW x steps starting at 0 MW and ranging 

up to xmax = Σk=1,Ng Ck.  The initial values are  FE(0) = 1 and 
FE(x>0) = 0.  The convolution process is shown in Eqn. 2 for 
generator k.  The left hand side of Eqn. 2 has the new updated 
values of FE(x) which replace the FE(x) at the end of each k’th 
generator after all x = 0, xmax have been calculated.  The real 
numbers x in a computer program are converted to integers, x = 
INT(x), and used directly in the computer program array index 
for FE(x).  Note that any FE(x < 0) = 1. 
 

 [  FE(x)   =   (1 − FORk − DFORk)⋅FE(x)   
 +  DFORk⋅FE(x−Dk)  +  FORk⋅FE(x−Ck)  ] x = 0, xmax     (2) 
 

V.  PIECEWISE QUADRATIC CONVOLUTION 

 The PQ method is described in detail in [4].  The equations 
presented here are necessary to perform the PQ operations 
presented in this paper.  Fig. 2 illustrates PQ interpolation. 

Discrete FG( j⋅h) points describe the FG(x) function. 
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         Note:  Always interpolate in the r < 0 

         region to achieve high accuracy 

         in the lower right hand tail. 

     Pr 

 

 

 

     r = −1    r = 0   r = 1 
 0              x MW 

      (j-1)h     jh    (j+1)h 

Fig. 2.  Piecewise Quadratic Function Interpolation 
 

for r < 0 here Pr is never < 0 

(ringing is not possible) 

for r < 0 here Pr may be > 1 

(ringing is possible) 
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 In a computer program, j is the integer array position, and h 
is a real number MW increment spacing between the discrete 

j −1, j , and j +1 points on the continuous function FG(x).  Let 
x = h⋅( j + r) for −1 < r <1.  The interpolation equation for 
calculating continuous real FG(x) for any real 0 < x < xmax is 
 

    FG[ ( j + r)⋅h ]  =  (r /2)⋅(r − 1)⋅FG[( j −1)⋅h]  

  + (1− r
 2 
)⋅FG[ j⋅h] + (r /2)⋅(r + 1)⋅FG[( j + 1)⋅h].    (3) 

 
 Eqn. 4 shows the convolution of generator Gk state(s) into 
FG(x) in PQ format.  FG(x) is represented in a computer 

program as a real array of dimension [0 : jmax ≤ INT( h+Σk=1,Ng 
Ck) / h] as discrete values positioned at FG(x = j⋅h) where j is 
calculated using x = h⋅(j+r). Initially FG(0)=.5 and FG(x>0)=0. 
 In Eqn. 4, any occurrence of FG(x < 0) = 1.  The right hand side 

of (4) is to be completely evaluated before updating the FG(j⋅h) 
values on the left hand side of the = sign.  The interpolation 

scalars rc = (Ck / h) − INT(Ck / h) and rd = (Dk / h) − INT(Dk / h) are 
constant in Eqn. 4 for each k’th generator as well as c0 ... d2, jc, 
and jd shown below.  
 

  c0 = rc⋅(rc+1)/2  c1 = (1−rc
2)  c2 = rc⋅(rc−1)/2  

  d0 = rd⋅(rd+1)/2  d1 = (1−rd
2)  d2 = rd⋅(rd−1)/2 

   jc  = INT(Ck / h)    jd  = INT(Dk / h) . 

 

Then Eqn. 4 is 

[ FG{h⋅j}    = (1 − FORk − DFORk)⋅FG{h⋅j}  +  

FORk⋅[c0⋅FG{h⋅( j −jc−1)} + c1⋅FG{h⋅( j −jc)} + c2⋅FG{h⋅( j −jc+1)}] + 

DFORk⋅[d0⋅FG{h⋅( j −jd−1)} + d1⋅FG{h⋅( j −jd)} + d2⋅FG{h⋅( j −jd+1)}] 

                    ] j = 0, jmax    (4) 

 

 Note that r < 0 shown in Fig. 2 has been factored into the 
above equations causing sign changes in Eqn. 4 with respect to 

Eqn 3.  In Eqn. 5, the operator • means a PQ convolution 
process as described in Eqn. 4.  Eqn. 5 is the convolution of all 
generator states creating FG(x). 
 

   [  FG(x)  =  Gk•FG(x)  ] k = 1, Ng          (5) 

 
 An expression for the integral of FG(x) is given in Eqn. 6. 
Let j0 be the discrete point immediately to the left of x.     Then 

j0 = INT(x) and r = x − j0.  The PQ equation for calculation of 
expected unserved energy EUE(x = ΣCk − y) for a period of one 
hour for a load level of y = ΣCk − x MW is 
 

 EUE[x = h⋅( j + r)]  = F (x)dxG
x

∞

∫ , or in discrete form is 

 EUE[x]  =  [ F {h j}G
j

j

0

max

⋅∑  + 

    [ −(r
3
/6) + (r

2⋅3/4) − r −(7/12)]
 ⋅FG{h⋅j0}  + 

    [   (r
3
/3) − r

2
 +(1/12)]

 ⋅FG{h⋅( j0+1)}   + 

    [ −(r
3
/6) +(r

2
/4) ]

 ⋅FG{h⋅( j0+2)} ] ⋅h  .    (6) 

 Fig. 3 shows the PQ FG(x) error in Fig. 1 with respect to the 
exact FE(x) distribution for the 286 generator system. 
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     Fig. 3.  PU Error of  (FG-FE)/FE in Fig. 1. for h=58.197 MW 
 

 The error is a function of the h MW grid step size.  Table 2 
shows how the error at x=10, 20, and 30 percent varies as the h 
is adjusted by a multiplier of two above and below h=58.197. 
 

Table 2.  PQ Error vs h MW Grid Increment and vs x MW Outg. 

Outg 

Cap 

FE Exact 

h=1 MW 

FG 720 incr 

h=29.0985 

FG 360 incr 

h=58.197 

FG 180 incr 

h=116.394 

10% 

 

.5400181 

pu error : 

.5400144 

-.0000068 

.5399837 

-.0000637 

.5396498 

-.0006820 

20% 

 

1.70847E-3 

pu error : 

1.70889E-3 

.0002452 

1.71065E-3 

.0012771 

1.72256E-3 

.0082459 

30% 

 

1.06976E-8 

pu error : 

1.07100E-8 

.0011647 

1.07724E-8 

.0069978 

1.12558E-8 

.0521781 

 

VI.  LOAD FLOW SOLUTION REQUIREMENTS 

 An initial top state load flow is solved using sparse matrix 
techniques [6,7] in which all the generators are on line and 
running as constant power sources with no reactive limits.  Area 
bus loads are scaled to equal owned generation capacity plus 
purchases less sales less area loss.  Area interchange is the 
generation capacity within an area exported to other areas less 
power imported from other areas.  Area loads are scaled each 
iteration to account for area losses in the top state case. 
 Generation outage cases are variations of the top state case 
and total system load is scaled to account for losses.  Generation 
reactive power is unlimited.  Autotransformer taps are held 
constant.  A load flow solution tolerance of at least .01 MVA at 
each bus is recommended to keep cumulative errors small when 
summing incremental line flows.  Care must be taken in the load 
flow to achieve a high solution accuracy [8]. 

VII.  CALCULATING LINE DISTRIBUTION FACTORS 

 Real Generators - Using the top state load flow as a 
reference case, each generator is outaged one at a time.  The 
purpose is to develop a set of Hj,k power distribution factors for 
all k=1,kmax generators and all j=1,Nt transmission lines. These 
are the per unit change in power flow in each line j as a result of 
loss of generator k. Incremental flows are partitioned into 
positive and negative sets for each line where positive is 
arbitrarily one direction for the line and negative is the opposite 
direction.  The sum of all incremental flows on each line will 
not sum exactly to produce the top state real power line flows. 
For each line, the directional incremental flows in the direction 
that is dominant are scaled by a real number multiplier so the 
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sum of all flows will exactly yield the top state flows on each 
line.  Each line is individually scaled.  Experience shows this 
correction is small; about one percent weighted average for the 
286 generator system and about one percent for the IEEE 
Reliability Test System (RTS) [9].  For each line, the adjusted 
line flows are then normalized to the outaged generators and 
stored as Hj,k line distribution factors. The 286 generator case 
uses 3.62 megabytes of disk space to store all H factors. 
 Virtual Generators - The real generation model described in 
previous paragraphs can only be used to shed load for the entire 
system.  But load shedding across the total system doesn’t make 
sense as a corrective action.  Selective load shedding of specific 
areas or even specific buses associated with specific generators 
will be required to efficiently unload the overloaded line states. 
Virtual generators are power injections into selected load buses 
to effectively reduce load at these buses.  The distribution 
factors for the virtual generators are calculated in the same 
manner as previously described for real generators and are 
included in the set of Hj,k.  In setting up the incremental load 
flow, each k’th virtual generator is made proportional to the real 
load on each bus in which load shedding is to be executed 
proportionately on all the load buses selected.  The case is 
solved and incremental line flows are calculated and then 
normalized.  Eqn. 7 shows how linear combinations of 
normalized Hj,k are used to produce new generation to load 
factors.  The m’th terms are real generators and the n’th terms 
are virtual generators.  Virtual generation is used in this 
probabilistic load flow model to execute heuristic load shedding. 

   [ Hj,m-n =    Hj,m − Hj,n  ] j =1, Nt        (7) 

VIII.  PROBABILISTIC LINE FLOWS 

 Calculating Line Distributions - The Hj,k factors link the 
k’th generator states in Table 1 with the j’th transmission line 
flow states in Fj(x).  The increase in positive real power flow in 

line j due to real generator k is Hj,k⋅Ck.  For any line j, the set of 
generator states in Table 1 combined with Hj,k defines the 
probabilistic line flow states Fj(x) as shown in Eqn. (8). 

  [Fj(x)  =  [ (−Hj,k⋅Gk)•Fj(x)  ] k = 1, Ng  ] j = 1, Nt     (8) 

 The −Hj,k indicates that flow states are to be removed from 
Fj(x) as generators are outaged.  In the top state, all the line 
flows due to all the generators are already included and sum to 
xoj for each j’th line.  Fj(x) is initialized for the top state as 

Fj(x < xoj) = 1, Fj(x > xoj) = 0, and Fj(x = i⋅hj) = r.  Where i is the 

discrete point below xoj according to  i = INT(xoj/hj−.5+b)  and 
hj = (xmaxj − xminj)/(number of grid increments).  Then 
r = xoj/hj−.5+b−i and b is a shifter to keep xmaxj and xminj within 
the range of the discrete array.  Setting up PQ is covered in 
more detail in [4].  Eqn. 8 will only produce low error on the 
lower right hand tail of Fj(x).  In order to model negative flow 
line overload states accurately, the line direction will need to be 
reversed and Eqn. 8 repeated.  This means that line j can have a 
second Fj(x) in which the line flows have been reversed and the 
line overload is in the negative direction.  The -j in F-j(x) is used 
to signify convolution Fj(x) with flows reversed for line j. 

 Screening Lines - Many lines will not overload for any 
generation state or will have overloads of such low probability 
that their contribution to the EUE is insignificant.  Lines with 

xmaxj <Rj and xminj >−Rj can be discarded from further analysis 
since there are no generation failure states resulting in overload. 

Lines with small Fj(x = Rj) < 10
−12
 can also be discarded. 

IX.  REMOVING LINE OVERLOADS 

 A set of F±j(x) line distributions are produced as a result of 
executing steps 1 - 8 listed in section III.  Steps 9 - 20 are 
expanded below to show how load shedding is calculated. 

9.  Discard lines with Pr [Xj > Rj] = F±j(x = Rj) < 10
-12
 and rank 

the remaining lines in descending order of Pr [Xj > Rj ]. 

10.  Select line j with the highest F±j(x = Rj). 
11.  Build a heuristic load shedding table for line j.  The LST is 
created as a list of decreasing positive Hj,m-n for line j.  Note that 
the LST is usually not unique.  For example, a generator 
supplying power to several companies with an overloaded 
stepup transformer could have the load shedding assigned to 
any of the companies with nearly identical results. 
12.  Create a partial Fj(y) for line j using only the Hj,k flows 
causing an increase in overload which are called the line 
overload increasing flows.  The decreasing incremental flows 
reduce the probability of overload but do not reduce xmaxj. 
13.  Use the partial Fj(y) created in 12 to initialize F(x,y).  First, 
set all of the two dimensional array F(x,y) to zero.  Function 
F(x,y) = Pr[generation MW available > x and line flow MW>y]. 
The x axis ranges from x1 = sum of increasing generation MW 
to x2 = sum of all generation.  The y axis ranges from y1=Rj line 
rating to y2 = ymaxj.  Then set F(x1,y) = Fj(y) for all y1 < y < y2. 
The grid MW spacing of F(x,y) will be determined by the x and 
y ranges and the number of increments selected.  The size of 
F(x,y) affects solution accuracy versus execution speed.  x~360 
and y~50 increments have been found to give good results. 
14.  Convolve decreasing line flows into F(x,y).  A piecewise 
linear equation for performing this operation is given in Eqn. 9 
for line j and generator k (two states). 
 

 F(x,y)after= F(x , y)before⋅FORk + 

    F(x−Ck , y+(Hj,k⋅Ck ) )before⋅(1−FORk)     (9) 
 
The generator outage state is not shifted.  The generator 
available state is shifted downward and to the right.  In the 
process of shifting outage and derated states, an interpolation 
must be performed between discreet points of F(x,y).  A linear 
interpolation is made of the four adjacent points using relative 
rx and ry where 0<rx<1 and 0<ry<1 between grid increments. 
15.  Convert F(x,y) to a partial density function F(x,y) as shown 
in Eqn 10.  This is performed after all the decreasing line flow 
generators have been convolved into F(x,y).  The i and j are 
discrete points in (10) increasing to the right and upward. 
 

  [ F( i, j ) = F(i, j ) −F( i+1, j ) ] for all  i  and  j         (10) 

16.  Select the next entry in the LST.  This will be generator m 
and load area n that will decrease the loading on the overloaded 
line j the fastest while minimizing the amount of load shed. 
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17.  Calculate the maximum MW generator m will be reduced 
(a heuristic) based on constraints of 1) line overload needing 
reduction, 2) generation capacity available for reduction, and 3) 
maximum load that can be reduced.  If H values are << 1 the 
user should review the LST to see if load shedding loads and 
generation listed are appropriate for line j. 
18.  Shift the F(x,y) states as a function of the load shedding. 
For generator m and load n, Hj,m-n is the slope of a line in the x-y 

plane of F(x,y).  If a ∆yj line flow is reduced due to an m-n 
reduction, then all the states in F(x,y) are shifted ∆x=∆yj /Hj, m-n. 
Fig. 4 illustrates the concept of how to shift F(x,y) states. 

   y 

 

 

 

                x 
      Generator m - Load Area n MW  States 

Figure 4.  Shift in F(x,y) States to Unload Line j 

19.  Calculate the incremental changes in FG(x).  This is 
performed by observing the change in F(x,y = Rj) before and 

after a ∆yj shift in line j flows.  The F(x,y = Rj) values before a 

∆yj shift are subtracted from a temporary function T(x) that has 
the same x scale as FG(x).  After a ∆yj shift is performed on 
F(x,y) as shown in step 18, the new shifted values in F(x,y=Rj) 
are added to T(x).  The x axis in FG(x) ranges from installed 
generation capacity downward while the x axis in F(x,y ) is the 
opposite with installed capacity on the upper end of the x range. 
The x and x have different scales but any point on one can be 
mapped to the other using a linear conversion formula and 

interpolation of either of the functions.  After a series of ∆yj 
increments (repeating steps 16-19) have unloaded line j 
completely, the T(x) is integrated (summed) from 0 MW up to 
the total capacity with each T(x) point being the integrated 
value of T(x) up to that point.  Then FG(x) = FG(x)+T(x) to 
capture the increased amount of unavailable generation capacity 
due to the line j transmission constraint.  This is the total system 
FG(x) with line constraints.  Set up separate Tn(x) to capture 
load shedding for each n’th area in accordance with the LST 
load entries.  Use sn= (area n load+loss MW / total generation 
MW) to scale the MW levels in FG(x) for individual n’th area 
load sheddings. 
20.  Estimate the reduction in loading of other overloaded lines. 
This is a heuristic for unloading jointly overloaded lines.  An 
example is two overloaded lines electrically in series or parallel. 
The generation and load that unloads one line also unloads the 

other.  The Fk(x) (k≠j) line distribution functions could be shifted 
downward to account for joint unloadings.  A better approach is 

to increase the Rk ratings.  Let ∆xk be the Rk MW shift of line k 

rating due to a ∆xj small increment unloaded in line j.  If 
Fk(Rk)<Fj(Rj) then ∆xk≈ ∆xj⋅(Hk,m-n /Hj, m-n).  If Fk(Rk)>Fj(Rj), 

then ∆xk≈∆xj⋅(Hk,m-n/Hj,m-n)⋅[Fk(Rk) /Fj(Rj)].  Note that all line 

ratings are updated as Rj=Rj+∆xj and Rk=Rk+∆xk for each ∆xj 
increment unloaded.  Fj(x) is never shifted. 
 The above processes are repeated in small line flow 
increments using steps 17 through 21 until there are no more 
overloaded lines.  Transmission EUE is calculated as the 

difference in FG(x) EUE before and after T(x).  Transmission 
LOLP within an h MW interval is the difference in transmission 
EUE divided by h.  Generation and transmission EUE and LOLP 
can be displayed in small incremental percentage steps. 
 

X.  TEST CASE USING IEEE RTS 

 An example is presented using the IEEE Reliability Test 

System [9].  The RTS is divided into three load areas, North 

(buses 14-22), Central (buses 3,4,6,9-13,23,24), and South 

(buses 1,2,5,7,8).  A full enumeration linear program LP model 

is used as a benchmark to test the accuracy of the convolution 

method.  In order to keep the full enumeration run time 

reasonable, generators are combined at each load flow bus 

The RTS has no overloaded lines when all lines are in service. 

All lines in the RTS are derated to create overloads.  Results of 

the tests are shown in Figs. 5 and 6 below for line deratings to 

80%, 60% and 40% of normal. 
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Fig. 5.  RTS Transmission EUE vs Percent Load For Each Area 
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Fig. 6.  Total Transmission EUE vs Percent Loading For All Lines 

 The 80% line ratings case has probabilistically overloaded 
lines 6-10 122%, 7-8 201%, 8-9 126%, 8-10 112%, 14-16 
118%, 16-17 116%, and 16-19 106%.  The convolution 
heuristic gives excellent results for this 80% case.  However, the 
40% line ratings case shows that the convolution heuristic 

slope=Hj,m-n 

line rating Rj 

South 

Central 

North 

All line ratings = 80% 

of RTS normal. 

Each area shows EUE results for 

Convolution and Enumeration. 

80% normal line ratings 

for total system EUE 

enum. 40% line ratings 

convol. 40% 

ratg. 

 

enumeration and 

convolution for total 

system using  60% of 

normal line ratings 
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calculates too small a transmission EUE compared with the LP 
when all lines are heavily overloaded (in both directions).  This 
is due to the step 20 process of unloading lines using only the 
increasing line flows (increasing in both directions).  Step 20 
assumes the generator-load combinations causing incremental 
line flows in opposite directions are too weakly coupled to be of 
significance. This is true only when the transmission system is 
reliable with low probabilities of lines being overloaded. 
 

XI.  LARGE SYSTEM PLANNING EXAMPLE 

 A second example is presented showing how the 
convolution method presented in this paper has been applied to 
a real planning problem at the City of Austin Electric Utility 
Department (COA).  The COA system is a ~1700 MW peak 
demand 69 kV and 138 kV system connected through a number 
of 480 MVA autotransformers to the ERCOT (Electric 
Reliability Council of Texas) 345 kV system.  The ERCOT 
system load flow and generator reliability planning data bases 
have ~ 300 generators, 4200 buses, and 5200 lines.  It is a large 
system in the sense that the generator and line outage states are 
far too numerous to be enumerated. 
 The reliability of the COA system is highly dependent on its 
autotransformers to supply emergency reserve power from 
ERCOT as well as 950 MW COA owned generation on the 345 
kV grid.  The autotransformers become more critical when a 
550 MW plant (Holly) centrally located in the COA system is 
retired in a few years.  Presently the COA has two bulk 
transmission substations, Austrop and Lytton.  Each station has 
two 345/138 kV autotransformers.  A third 345 kV substation 
called Garfield has been constructed and will soon be energized 
with one 480 MVA autotransformer.  Fig. 7 shows the layout. 
 

 
         Austrop 
      City of Austin             ERCOT 
         Garfield  
    138 kV System       345 kV System 
         Lytton 
 
Fig. 7  City of Austin 345/138 kV 480 MVA Autotransformers 
 

 The COA power supply reliability is a function of the 
ERCOT power supply reliability and the reliability of the 
transmission network delivering the ERCOT power.  Any 
autotransformer outages are severe because they are few in 
number in the COA system and because their repair time is 
long.  The COA autotransformer catastrophic failure experience 
is consistent with [10].  For study purposes a pessimistic 
autotransformer forced outage rate of 4% is used.  The study is 
repeated using a more optimistic 2% autotransformer FOR to 
see if the study results are sensitive to the FOR value chosen. 
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Fig. 8  COA EUE With Autotransformer FOR=.04 
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Fig. 9  COA EUE With Autotransformer FOR=.02 

 

 Figs. 8 and 9 show the additional EUE caused by 
autotransformer failures for all COA autotransformer outages 
through N-3.  Up to 60 lines in the COA system are monitored 
for probabilistic overload.  Approximately 10

90
 generation 

states are modeled. 
 Curve 1 is the generation supply EUE available to the 
COA with no transmission constraints.   Curve 2 represents 
the additional transmission EUE with Holly not retired and 
with no Garfield autotransformers.  Curve 3 shows the 
increase in EUE with Holly retired.  Curves 4 and 5 show the 
progressive decrease in transmission EUE as one and two 
autotransformers are added to the Garfield substation when 
Holly is retired.  The study shows that two autotransformers at 
Garfield bring the reliability back to about the same level as 
before Holly is retired.  This holds true for both the 4% and 
2% autotransformer FOR as shown in Figs. 8 and 9. 

XI.  CONCLUSIONS 

Generation EUE 

Transmission EUE 

Transmission EUE 

Generation EUE 
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 The objective of this project is to develop a new multi-area 
composite generation/transmission reliability model based on 
convolution techniques.  Convolution can cover the entire set of 
outage events if it can be implemented at all.  Desirable features 
include: 1) a full transmission network, 2) solution times of no 
more than a few hours for a large system, and 3) the ability to 
dissect a network so completely that even relatively 
inexperienced engineers can easily identify transmission 
constraints and their impact on reliability. 
 The model presented in this paper is close to satisfying the 
desired objectives.  A problem still exists in the use of a 
heuristic to perform load shedding.  A future paper will be 
needed if a better solution can be found.  A line outage model 
was not presented here but it has been developed and will be 
presented later as an extension to this paper.  Even without a 
line outage model, transmission states can be explicitly 
enumerated. 
 The authors believe the methods presented in this paper 
represent an important advancement to the present state of 
knowledge concerning the assessment of power system 
reliability. 
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