Evaluation Of Year 2020 IEEE RTS Generation Reliability Indices

by

Eugene G Preston

Probabilistic Methods Applied to Power Systems

Boise, Idaho

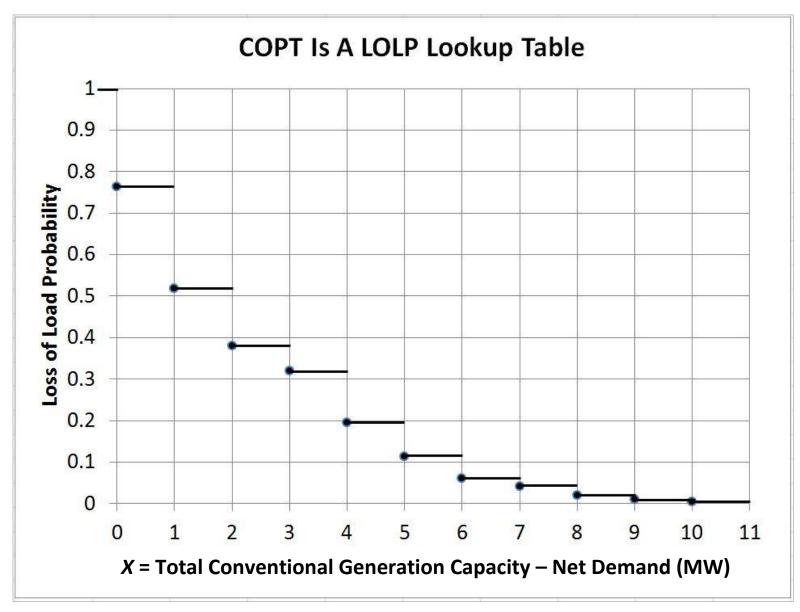
June 25, 2018

Evaluation Of Year 2020 IEEE RTS Generation Reliability Indices

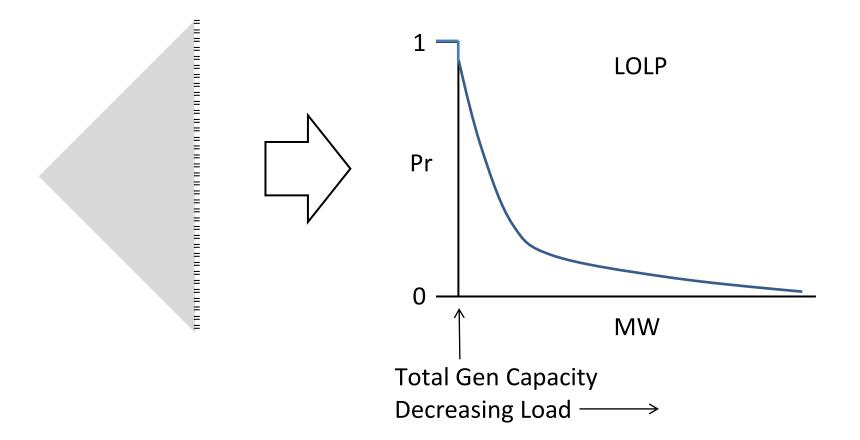
- "Exact" reliability indices provide a useful benchmark reference.
 - Allows subtle modeling errors of multiple Variable Energy Sources to be identified.
 - Allows errors inadvertently introduced by analytical methods to be calculated.
- In order to obtain "exactness" no LOLP approximations are made.
 - Excludes analytical techniques such as the Mixture of Normals Approximation.
 - Excludes analytical techniques such as the method of Cumulants.
 - Excludes the use of random number generators, i.e. Monte Carlo.
 - Excludes the use of interpolations of functions from least squares curve fittings.
 - All MWs and LOLPs are obtained from the expansion of a full binary tree in a 1986 paper and from a COPT capacity outage probability table in this RTS 2020 paper.

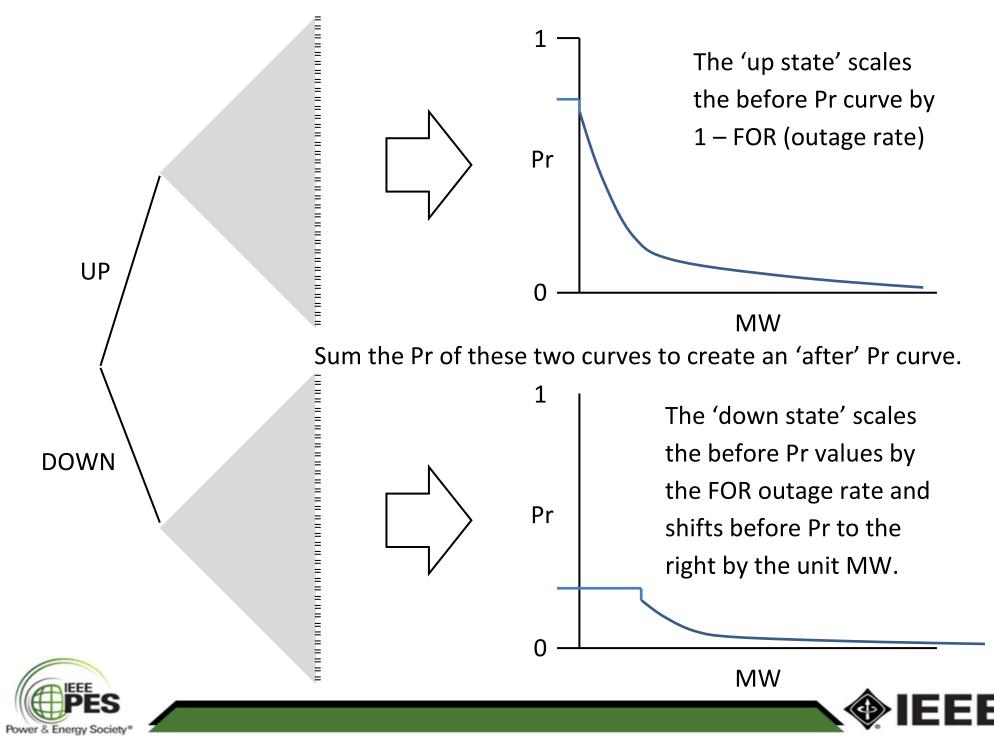
Note: LOLP is the loss of load probability for a given MW load level due to an insufficient generation supply capacity.

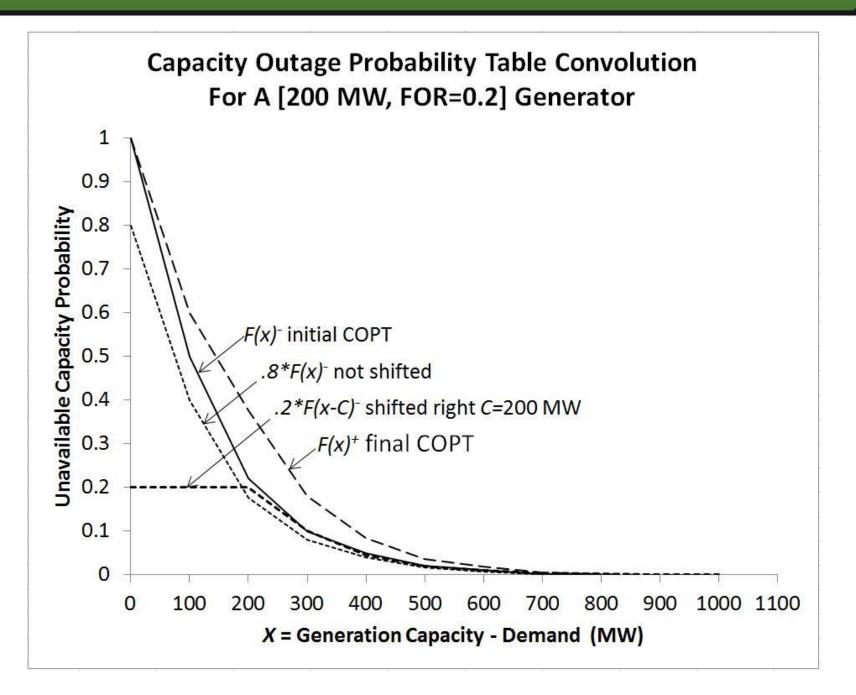
- How 1979 RTS "exact" indices in a 1986 paper are calculated:
 - A full binary tree of all up, down, and derated states are created.
 - A three generator example below shows how the binary tree is used.


Unit 1			MW Pr	MWO	Cumulati MWO Pr	∑Pr
		^{20, .7}	45, .504	0	0.504	1.000
	15, .8 0, .2	0, .3	25, .216	20	10 .056	.496
^{−10, .9} -	0, .2—	20, .7	30, .126	15	15 .126	.440
		L 0, .3	10, .054	35 so	ort 20 .216	.314
		^{20, .7}	35, .056	10	25 .014	.098
L 0, .1 -	15, .8	0, .3	15, .024	30	30 .024	.084
	L 0, .2	20, .7	20, .014	25	35 .054	.060
FOR = forced outag	e rates	L 0, .3	0, .006	45	45 .006	.006

The sum of units 'up' is the MW column. The probabilities are multiplied to the ends of each branch. The sum of all probabilities is 1. The MWO (megawatts outaged) is the 45 MW total minus the MW available. The MWO can be sorted in ascending order along with the branch probabilities. Summing the branch probabilities creates a distribution.


When we plot this distribution, which we call the COPT, or capacity outage probability table, we need to interpret it this way: (note - the points below are not from the above table)


The binary tree MW and probabilities are shown mapped to a cumulative distribution.



Add a new generator to the left of the binary tree and see the change in the COPT.

 $[F(x)^{+} = (1 - FOR_{k}) \cdot F(x)^{-} + FOR_{k} \cdot F(x - C_{k})^{-}] \forall x = 0, x_{max}$

7

Once the COPT is created, the indices LOLE (loss of load expectation), LOLH (loss of load hours), and EUE (expected unserved energy) are calculated directly from the LOLPs:

LOLE = \sum daily maximum LOLPs for a year (days/year)

- $LOLH = \sum hourly LOLPs for a year$ (hours/year)
- EUE = ∑ integral of all LOLP×MW from net MW demand down to 0 MW every hour (MWh)

COPT Array Size Is Small and Execution Speed Is High

- The 1979 RTS tree was large; 32 generators $2^{32} > 4$ billion states.
- The 1979 RTS COPT size in RTS3 "exact" LOLPs is 2652 numbers.
- COPT saves space by use of integer 1 or .1 MW grid increments.
- The 1996 RTS tree was larger; 96 generators $2^{96} > 10^{28}$ states.
- The 1996 RTS COPT size in RTS3 "exact" LOLPs is 5156 numbers.
- The ERCOT system with 380 generators COPT is 16296 numbers.
- The CAISO system with 530 generators COPT is 26961 numbers.
- Creation of COPT uses linear arrays which are efficiently executed.
- Once COPT is created, LOLP becomes a simple lookup (no math).

• RTS3 generator data looks like:

• RTS3 hourly data looks like:

YYYYMMDDHH,D, DEMAND, HYDRO, WIND, SOLAR, SOLARR(rooftop), 2020010101,4,0.40740,0.1842,0.850074,0.000000,0.000000, 2020010102,4,0.39809,0.1990,0.909606,0.000000,0.000000, 2020010103,4,0.39639,0.1638,0.843176,0.000000,0.000000, 2020010104,4,0.39852,0.1678,0.819610,0.000000,0.000000, 2020010105,4,0.41540,0.1626,0.796922,0.000000,0.000000, 2020010106,4,0.44828,0.1410,0.773835,0.000000,0.000000, 2020010107,4,0.48201,0.1506,0.681646,0.000000,0.000000, 2020010108,4,0.48668,0.2886,0.541848,0.416726,0.145686, 2020010109,4,0.48862,0.2514,0.464612,0.600515,0.365249, 2020010110,4,0.49224,0.3386,0.309143,0.671727,0.531686, 2020010111,4,0.49111,0.3506,0.169146,0.703056,0.635784,

• RTS3 program results versus the 1986 paper results.

1979	Base Case =	2850 MW Loa	d,
3405	MW Total Ger	neration, LF	U=0
	1986 Pape:	r <u>RTS3 Pr</u>	ogram
LOLE	= 1.36886 d	/y 1.36886	3 d/y
LOLH	= 9.39418 h	/y 9.39417	5 h/y
EUE	= 1176 M	Wh 117	6 MWh
=====	=================	============	
1979	Base Case w	ith 3 State	Gens
	1986 Pape:		
LOLE	= 0.88258 d	/y 0.88257	3 d/y
=====			=====
1979	Base Case w		
	1986 Pape:		-
LOLE	= 1.45110 d	/y 1.45110	9 d/y
=====		===========	=====
1979	Base Case w		
	1986 Pape:		
LOLE	= 3.99763 d	/y 3.98690	4 d/y

1979 Base Case, Demand = 2394 MW
LOLE = $\frac{1986 \text{ Paper}}{0.04756 \text{ d/y}}$ RTS3 Program $\frac{0.047559 \text{ d/y}}{0.047559 \text{ d/y}}$
1979 Base Case, Demand = 3135 MW
LOLE = $\frac{1986 \text{ Paper}}{6.68051 \text{ d/y}}$ RTS3 Program 6.680512 d/y
1979 Base Case with 5% LFU
LOLE = $\frac{1986 \text{ Paper}}{1.91130 \text{ d/y}}$ $\frac{\text{RTS3 Program}}{1.911295 \text{ d/y}}$
1979 Base Case with 15% LFU
LOLE = $\frac{1986 \text{ Paper}}{9.50630 \text{ d/y}}$ RTS3 Program 8.205766 d/y

• RTS3 program results for two RTS 2020 cases, both with LOLE = 0.1 d/y.

2020 RTS has three areas that individually peak at 2850 MW. The coincident peak demand is 8191.8 MW. The cases have 8076 MW conventional generation and 1000 MW of hydro. In the first 2020 Model RTS case the LFU = 0%, wind is 810 MW, and 500 MW solar is split between rooftop and tracking PV.

Indices	for a	0.00% LI	FU:
LOLE	=	0.100005	d/y
LOLH	=	0.236470	h/y
EUE MWh	=	37.	MWh
EUE ppm	=	0.98	pu ppm
LOLP>.00	04=	117	hrs

A second RTS case is run that utilizes VER capacities of 2508 MW wind and 2716 MW solar. The LFU is increased to 7.68% to achieve LOLE = 0.1 d/y.

Indices	for a	7.68% LI	TU:
LOLE	=	0.100048	d/y
LOLH	=	0.282378	h/y
EUE MWh	=	58.	MWh
EUE ppm	=	1.54	pu ppm
LOLP>.00)04=	168	hrs

GDATA File: G2020.TXT HDATA File: H2020.txt

2020 IEEE RTS 8192 MW load 8076 MW conventional generation with 1000 MW hydro 810 MW wind 500 MW solar. 2020 IEEE RTS hourly demand wind hydro and solar profiles created from,,,https://github.com/GridMod/RTS-GMLC

MAX GENR	=	8076	MW	
VARBL RES	=	1043	MW	
GENR+VRES	=	9119	MW	
MAX COPT	=	4524	(90000	MAX)
2020 RESUI	LTS:			
PERIOD	=	8784	HOURS	

- - - -

PERIOD	_	0/04	HOURS
PEAK DEMD	=	8191.800	MW
RESERVE	=	11.3	00
LOAD ENGY	=	37656.	GWh
LOAD FACT	=	52.331	00
PEAK NETD	=	7017.141	MW (DEMD-VR)
VR E USED	=	7457.	GWh
VR E LOST	=	Ο.	GWh
Indices fo	or a	0.00% LH	FU:
LOLE (AM)	=	0.000000	d/y
LOLE (PM)	=	0.100005	d/y
LOLE	=	0.100005	d/y
LOLEV **		0.100005	events/y
LOLEMW	=	156.	MW
LOLH	=	0.236470	h/y
LOLH/event	<u>_</u> =	2.364584	h/event
EUE MWh		37.	MWh
EUE ppm	=	0.98	pu ppm
EUE 🖇	=	0.000098	00
LOLP>1.E-4	1=	117	hrs

Variable Resource Capacity Credits Max Net Demand hrs for LOLP>1.E-4:

76.6% 9.3% 43.1% 37.6%

** LOLE measures events/24 hrs LOLEV measures events/12 hrs

This is one of the output report pages of RTS3 showing all indices.

• RTS3 automatically finds a demand to achieve a desired LOLE:

GENERATOR D	ATA FILE NAM	1E: G20				
TARGET LOLE	(OR RETURN)	: 1.0 (desir	ed LOLE)			
RTS3 is ex	ecuting					
calculatin	ng the COPT					
LOLE d/y	MW Demand	Upper MW	Lower MW			
30.199082	9999.000	9999.000	0.00000			
0.00000	4999.500	9999.000	4999.500			
0.001158	7499.250	9999.000	7499.250			
1.397416	8749.125	8749.125	7499.250			
0.068313	8124.188	8749.125	8124.188			
0.349934	8436.656	8749.125	8436.656			
0.747597	8592.891	8749.125	8592.891			
1.021407	8671.008	8671.008	8592.891			
0.869544	8631.949	8671.008	8631.949			
0.942400	8651.479	8671.008	8651.479			
0.980704	8661.243	8671.008	8661.243			
1.002307	8666.125	8666.125	8661.243			
0.989530	8663.684	8666.125	8663.684			
0.994424	8664.905	8666.125	8664.905			
0.995016	8665.515	8666.125	8665.515			
1.000506	8665.820	8665.820	8665.515			
1.000449	8665.668	8665.668	8665.515			
0.995484	8665.591	8665.668	8665.591			
0.995484	8665.630	8665.668	8665.630			
0.995484	8665.649	8665.668	8665.649			
0.995484	8665.658	8665.668	8665.658			
1.000449	8665.663	8665.663	8665.658			
		8665.663		finished	in	8
LOLE~=1	8198.8 was	the LOLE = 0.1	d/y load.			

sec