A TECHNIQUE FOR ALLOCATING LOSSES IN LARGE INTERCONNECTED ELECTRIC SYSTEMS

APPROVED:

WCDuesterhoeft HH Woodson

A TECHNIQUE FOR ALLOCATING LOSSES IN LARGE INTERCONNECTED ELECTRIC SYSTEMS

by

Eugene Gordon Preston, B.S.E.E.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 1979

Acknowledgement

The author expresses his thanks to his advisors,
Dr. W. C. Duesterhoeft, Jr. and Dr. H. H. Woodson, for their
encouragement and help. The author is also indebted to the
City of Austin Electric Department and the Power Interchange
Effects Task Force of the Texas Interconnected System for
providing the problem, the data, and the favorable environment
needed to develop the thesis. Professional Engineers whose
suggestions improved the course of the thesis development were
Mr. E. C. Rummel and Mr. W. D. Echols of the City of Austin
Electric Department, Mr. Walter Reid of the Lower Colorado
River Authority, and Mr. Larry Groce of the Dallas Power and
Light Company.

Abstract

A method of determining the distribution of power flows through an electric power system and the loss of power in each circuit for any single transaction occurring simultaneously with a multitude of other transactions is presented in this thesis. An important accounting criteria met by the technique of this paper is that the sum of all transaction flows and losses produces precisely the same flows and losses as a load flow solution.

Table of Contents

			Page
Acknow	wledg	gement	3
Abstra	act	• • • • • • • • • • • • • • •	4
Chapte	er		
I.	Int	roduction	7
	Α.	Importance of the Problem	
	В.	Characteristics of the Technique	
	C •	Application of the Technique	
II.	Cur	rent Electric Utility Practices	8
	Α.	Adjusting Generation to Meet Interchange	
	В.	Lesser Importance of Loss Accounting in Past Times	
	C.	Wheeling Power and Remote Plants	
	D.	Present Loss Accounting Practices	
III.	The	Solution Requirements	12
	Α.	Load Flow as a Basis	
	В.	Loss Algorithm Boundary Conditions	
		1. Components Sum to Load Flow Values	
		2. Power Balance at Each Bus	
		3. Transaction Flow Distribution	
IV.	For	mulation of Analytical Tools	14
	Α.	A Power and Voltage Equation	

<u>Page</u>
B. Assignment of Loss in Each Circuit
C. Setting Up the Solution Matrix
D. A Model for Autotransformers
V. Conclusions
Appendix
A. Definitions and Symbols
B. Large Network Example
C. Small Network Example
D. Program Source Listing
E. Wheeling Power Task Force Letters
Bibliography

Chapter I

Introduction

The electric utilities are presently dissatisfied with the way losses are being assigned to individual power transactions when those transactions cause displacements of power remote from the contracting utilities [5]*. These displacements are a result of the recent necessity of pooling the energy production of interconnected utilities [2, 4, 6, 7, 8, 9, 10]. This paper presents a solution to the problem of identifying the transmission flows and losses occurring in the network. The technique produces a unique answer for each transaction.

The solution technique begins with a solved load flow base case to establish the voltage profile of the network. A special matrix equation is built and solved for each transaction. For any one transaction, the transmission circuit powers are found to determine the loss in each circuit. As in the load flow, bus powers are balanced, and network flows are identified. The sum of losses and flows for all transactions will precisely agree with the load flow.

The method is straightforward and works well on large networks. Examples utilizing a 1178 bus system and a 16 bus system are included in the Appendix.

^{*}For numbered references see Bibliography on page 90

Chapter II

Current Electric Utility Practices

The topic addressed by this thesis is identification of the sources of losses that occur in an electric power transmission network. However, a discussion of the physical facilities and historical evolution of most utilities is appropriate before delving into the mathematics of the technique.

The physical system of an average utility consists of generation, transmission, and local distribution facilities. The transmission network is usually arranged so that any one circuit can be opened without affecting the generation from any plant or service to any distribution substation. An important point here is that multiple paths exist for the power to flow from a power plant to any substation. If these multiple paths did not exist, the analysis presented in this thesis would be greatly simplified, and the problem would probably have been solved long ago.

The continuous task of the production or generation division within a utility is to increase or decrease the level of power output of the plants that are on line to satisfy three power requirements. Customer load within a utility's service area, losses on circuits within the area, and sales or purchases to other utilities must all sum to the power

production or generation level.

Of the three factors needed to determine generation, only the power flowing through transmission circuits that tie to other utilities is known. The power production dispatcher adjusts the generation power until the sum of power through all tie circuits equals the desired interchange power. The load and losses are automatically met without knowledge of their exact magnitude. All these quantities are constantly changing with time, so the generation must also be constantly adjusted.

A utility uses generation power from its own plants to cover losses within its metered or control area. Until recently, the losses were usually the result of the utility's own generation and loads since most utilities had located their power plants close to their loads. In this case, very little circulating power appeared in the utility's neighboring transmission systems. Transmission ties between utilities were allowed to "float" and were designed to increase the reliability of each area in case local generation had a forced outage [1]. In recent years, the development of a national grid [10] for the purpose of wheeling economic energy over greater distances [3] has resulted in transactions between utilities that have significantly altered the power flows on transmission circuits on a local level [6]. These flows will thereby impact the local generation requirement in each utility by altering the losses within the control area.

The losses accounted for by a utility may not be directly related to its own operation.

If these losses were easy to identify, then an equitable compensation agreement would probably be in effect today for all affected parties. Currently, two methods are being utilized to compensate for losses. The "Contract Path" method has the buying and selling utilities find a path of connected utilities that will agree to wheel the power for the two parties. Each intermediate utility has some charge for the service [10]. Various paths are reviewed to find the one with the lowest overall wheeling cost. The problem with this technique is that the contract flows through the network do not align very well with the electrical flows. Load flow solutions modeling the transaction usually show that all the utilities in the network are affected to some degree. The Contract Path method allows some utilities to charge for a service that is only partially provided while other utilities receive no compensation at all.

Another more sophisticated method utilized by some power pools for compensation among the members of the pool involves the analytical determination of incremental losses for each utility for each transaction [1, 2, 4, 6, 8]. Since the nonlinearity of the losses is recognized, the transactions must be handled in the reverse order of occurrence. This procedure can produce an embarrassingly large increase in loss for a transaction if the order of occurrence moves it

from last on the list one day to first on the list the next day. If the order were based on some other criteria than "first come first serve", then some utilities would feel cheated by the technique that allowed some to take advantage of the peculiarity of the calculation procedure. Recognition of the nonlinearity in the calculation of losses therefore does not guarantee the success of a technique.

A technique not requiring ordering of transactions will be developed in the next two chapters. It will produce a unique solution for each transaction for a given load flow. Certain important scientific and accounting conditions will be satisfied that have been overlooked in other papers. The technique will have no more difficulty of implementation than a load flow model.

Chapter III

The Solution Requirements

The loss evaluation technique described in this thesis will begin by using as a basis for describing the network what is known in the electric utility industry as a "load flow". The load flow will be used to define one of the boundary conditions of our problem. The load flow will be assumed to be the best estimate available for the description of the state of the transmission system. In a real time application the load flow would need to be frequently updated. From the load flow, the total loss and power flow for each circuit is obtained.

The objective is to break the losses down so they can be identified circuit by circuit for each transaction. The load flow models the total network nicely but produces unsatisfactory incremental losses if transactions are solved as separate load flow cases and then compared. The solution of all transactions by this load flow comparison technique will produce loss sums that are grossly different from a load flow solution modeling them all simultaneously. Therefore the new technique must, as its first and most important characteristic, have the loss components and power flows identified in a manner such that the sum of all transactions will give the base case load flow quantities.

Another important requirement that is easily overlooked but is significant is the balance of power at each bus
for each transaction. The sum of powers into a bus must be
zero, and the sum of power into each end of a circuit must be
the circuit loss. This law of physics is met in the load
flow solution and should be met for transaction flows also.

If a transaction is defined as a subset of generation and load
within the network, then the total transaction generation
power must equal the sum of transaction loads and losses.

Since the loss a transaction causes is unknown before the
problem is solved, an iterative procedure will be required
to adjust either the transaction load or generation to obtain
the power balance.

A third feature that is not a strict requirement but only a desirable result is to have the distribution of power through the network for a given transaction be in good agreement with a comparison of two load flow solutions, one solution being the base case and the other having the transaction removed from the base case. Since the load flow is nonlinear, precisely the same distribution should not be expected. The objective here will be to minimize the difference. The 16 bus example in the Appendix includes the distributions using both the load flow comparison and the method developed in this thesis.

Chapter IV

Formulation of Analytical Tools

The requirements on the preceding pages must now be formally met using the precise terminology of mathematics. The first requirement stated that the sum of losses would agree with the load flow. The summation property can be met with a linear set of equations. The most desirable form is shown below by equation 1.

$$[P] = [W][V] \tag{1}$$

The column vector of bus powers equals some unknown square matrix [W] times the column vector of bus voltages. Matrix [W] is defined so that insertion of the base case load flow bus voltages will yield the load flow bus powers. Any other set of [P] representing a transaction could be used to find a set of [V]. From these voltages, the circuit currents, powers, and losses could somehow be determined. If the form shown in equation 1 is not used to meet the summation property, then the analysis is severly complicated. This paper will proceed with the linear form of equation 1 since it is considered by the author as being the most productive path to follow at the present time in the development of the other equations needed to allocate the losses associated with wheeling energy. Nonlinear forms are beyond the scope of this thesis.

Now the losses for any single circuit must be formulated. Let the current from transaction 1 be I_1 , from transaction 2 be I_2 , etc. until all components of current in the one subject transmission line are identified. Equation 2 shows that the sum of all transaction currents for the circuit is the same as the base case current I_b .

$$I_b = I_1 + I_2 + I_3 + \cdots$$
 (2)

The real power base case loss for the circuit is:

$$P_{I,b} = Re(ZI_bI_b^*) = I_bI_b^*Re(Z)$$
 (3)

Z is the circuit impedance.

Substituting equation 2 into 3 will expand and identify the loss each transaction current contributes toward the total circuit loss as shown in equation 4.

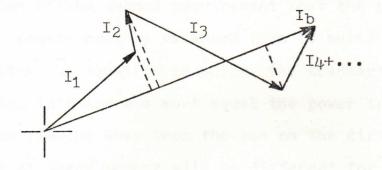
$$P_{Lb} = (I_{1}I_{1}*+I_{1}I_{2}*+I_{1}I_{3}*+\cdots +I_{2}I_{1}*+I_{2}I_{2}*+I_{2}I_{3}*+\cdots +I_{3}I_{1}*+I_{3}I_{2}*+I_{3}I_{3}*+\cdots +\cdots +C))Re(Z)$$

$$(4)$$

The complex nature of separating the loss components can be seen in equation 4 since inner product terms exist between each current. The scheme utilized in this thesis defines the loss assigned to transaction current I_1 as the real part of the sum of terms in the first row, the

loss due to I_2 as the second row, and so on for each current. Cross terms such as $I_1I_2^*$ and $I_2I_1^*$ produce real power loss components of equal value that are equally shared between the two transactions. Using this definition results in an interesting simplification of equation 4.

Factoring out the first current term from each row shows that each transaction current is effectively multiplied times the conjugate of the base case current as shown in equation 5.


$$P_{Lb} = Re(I_{1}(I_{1}*+I_{2}*+I_{3}*+...) + I_{2}(I_{1}*+I_{2}*+I_{3}*+...) + I_{3}(I_{1}*+I_{2}*+I_{3}*+...) + ...(...))Re(Z)$$
or
$$P_{Lb} = Re(I_{1}I_{b}*+I_{2}I_{b}*+I_{3}I_{b}*+...)Re(Z)$$
(5)

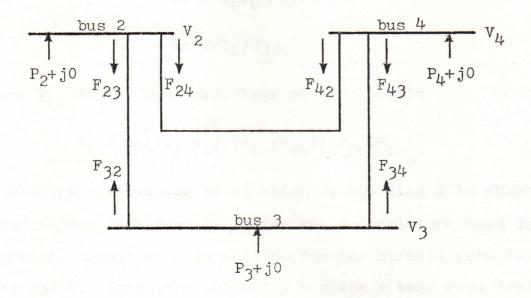
The application of the Re expressions as they appear in equation 5 is important for accounting and conceptual reasons. A single Re could have been performed on the entire expression since $\text{Re}(I_bI_b*Z)$ and $I_bI_b*\text{Re}(Z)$ will produce the same real number. I_bI_b* is always a real number and can be factored out of the Re argument without changing the answer. A transaction loss caused by current I_1 could be calculated either as $\text{Re}(I_1I_b*Z)$ or as $\text{Re}(I_1I_b*)\text{Re}(Z)$. These two equations do not produce the same result because I_1I_b* will usually be a complex number. If this complex quantity is

multiplied times the complex number Z, the reactive part of the impedance will contribute toward the transaction current real power loss. This contribution is unrealistic since the circuit loss in the real world is caused only by the circuit resistance. If R is the circuit resistance and is obtained by Re(Z), then the logical definition of transaction loss for transaction current I_1 is $Re(I_1I_b^*)$. This form is the same as equation 5.

Figure 1 shows conceptually how several complex transaction currents contribute toward the base case current. The transaction losses are assigned in proportion to the projection of each transaction current with respect to the base case current.

Fig. 1.--Transaction currents in a circuit

Equation 5 can be interpreted in a slightly different form to give more physical meaning to the definition selected to simplify equation 4. The term $Re(Z)(I_b*)$ is the


portion of the voltage drop across the circuit that relates to the loss of real power. When a current I_1 is forced through this potential difference, real power is lost or gained depending on the direction of the current and the voltage difference. If the load flow base case potentials are viewed as a topographic map, then the losses due to transaction currents are found by calculating the work required to force these currents through the network profile. Although this profile is a function of the simultaneous combination of all transactions, its shape is frozen for the purpose of identifying the losses.

Equation 5 allows the loss of each transaction to be identified uniquely for the circuit if each of the transaction currents I_1 , I_2 , I_3 , etc., are known. Equation 1 must be designed with a [W] matrix that will produce currents consistent with the losses of equation 5.

This connection between equations 1 and 5 is found through the use of the second requirement that the bus real and imaginary powers must be balanced (sum to zero) at each bus. Describing the equation in words, the transaction power from generation into the bus must equal the power to the load plus the power flowing away from the bus on the circuits. The magnitude of these powers will be different for the transaction than what has been displayed by the load flow solution. Figure 2 and equation 6 illustrate the bus power balance. The reactive power from load and generation is set to zero for the transaction although it may be nonzero in

the base case load flow solution.

Fig. 2. -- A three bus example

Summing the powers around bus 3:

$$P_3 + j0 = F_{32} + F_{34}$$
 (6)

Equation 6 is close to the desired form of equation 1. The circuit flows in equation 6 must be written in a manner consistent with equation 5. Since equation 5 is in terms of currents and equation 1 in terms of voltages, a conversion of equation 5 is performed to get it into the desired voltage form as shown in equation 7. Equation 7 is written in a form applicable to any of the three circuits shown in figure 2. Base case values have an additional b subscript. P_L is a circuit loss, subscripts f and t mean from and to buses respectively, and the transaction current in the circuit is I. The base case current is I_b. The real part of the circuit Z is shown as R.

$$P_{L} = Re(I I_{b}^{*}) R$$

$$= Re(I I_{b}I_{b}^{*}/I_{b}) R$$

$$= Re(I/I_{b}) P_{Lb}$$

where $P_{\mathrm{L}b}$ is the base case loss of the circuit

$$P_{L} = Re((V_{f}-V_{t})/(V_{fb}-V_{tb}))(F_{fb}+F_{tb})$$
 (7)

To clarify the meaning of equation 7, equation 8 is shown below in the same form as 7 with the nomenclature used in figure 2. Equation 8 is written for the circuit from bus 3 to bus 2. Again, the subscript b means a base case load flow quantity and is not a function of the transaction.

$$P_{L32} = Re((V_3 - V_2)/(V_{3b} - V_{2b}))(F_{32b} + F_{23b})$$
 (8)

Equation 8 shows the loss in the circuit from bus 3 to bus 2 for the transaction but does not indicate what the transaction flows F_{23} and F_{32} are. If the loss of the circuit in the base case is described by equation 9, then the same relation must be true for the transaction powers as shown by equation 10. Then observing that equation 8 contains the proper terms to relate the base case flows to the transaction flows and still be consistent with all the equations that have been developed up to this point, equation 11 can be written by observation. Equation 11 is very close to the desired power and voltage relationship of equation 1.

$$P_{L32b} = F_{32b} + F_{23b}$$
 (9)

$$P_{L32} = F_{32} + F_{23} \tag{10}$$

$$F_{32} = \text{Re}((V_3 - V_2)/(V_{3b} - V_{2b})) F_{32b}$$
 (11)

The form of equation 11 can be applied to the other circuit connected to bus 3 to find the transaction flow F_{34} . Combining these two flows will show in detailed form the expansion of equation 6. This equation is shown below in equation 12.

$$P_{3}+j0 = Re((V_{3}-V_{2})/(V_{3b}-V_{2b})) F_{32b}$$

$$+Re((V_{3}-V_{4})/(V_{3b}-V_{4b})) F_{34b}$$
(12)

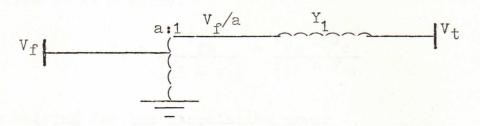
At first glance equation 12 looks like the desired link between equations 1 and 5. However, inserting values for all quantities except V3 will reveal that an infinite number of solutions still exist for the value of V3. In order for equation 12 to be of any use, the Re expression must be dropped. This means that reactive flows will exist, but will sum to zero to meet the requirement of j0 shown on the left hand side of the equation. Equation 13 is the magic power balance equation needed in the [W] matrix. It is linear in terms of power and voltage.

$$P_{3}+j0 = ((v_{3}-v_{2})/(v_{3b}-v_{2b})) F_{32b} + ((v_{3}-v_{4})/(v_{3b}-v_{4b})) F_{34b}$$
(13)

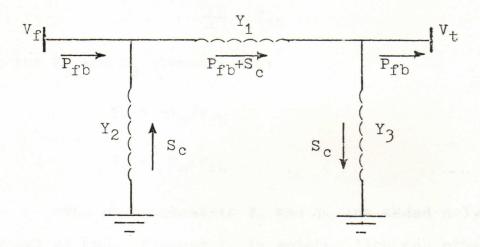
Repeating equation 13 for buses 2 and 4, collecting the voltage terms, and writing the three equations in matrix notation completes the derivation of [W] in equation 1. This expansion of equation 1 for the circuit in figure 2 is shown below in equation 14.

$$\begin{array}{c} P_{2}+j0 \\ P_{3}+j0 \\ P_{3}+j0 \\ P_{4}+j0 \end{array} = \begin{bmatrix} \frac{F_{23b}+F_{24b}}{V_{2b}-V_{3b}} & \frac{-F_{23b}}{V_{2b}-V_{4b}} & \frac{-F_{24b}}{V_{2b}-V_{4b}} \\ \frac{-F_{32b}}{V_{3b}-V_{2b}} & \frac{F_{32b}+F_{34b}}{V_{3b}-V_{2b}} & \frac{-F_{34b}}{V_{3b}-V_{4b}} \\ \frac{-F_{42b}}{V_{4b}-V_{2b}} & \frac{-F_{43b}}{V_{4b}-V_{3b}} & \frac{F_{42b}+F_{43b}}{V_{4b}-V_{3b}} \end{bmatrix} V_{2} \end{array} \tag{14}$$

One more item concerning equation 14 needs addressing. The matrix will be singular if all the voltages are left as variables. To circumvent this problem, one of the buses must have its voltage specified as a constant. The author has chosen to use the network swing bus and its voltage as the reference in equation 14. If the power array is entered as all zeroes, the network will have the voltage magnitude and angle of the system swing bus at every bus in the network. If the bus powers of the base case are entered and equation 14 is solved, the base case voltages will result. Any other set of P vectors will yield a set of V vectors that can be used with equation 11 to find the distribution of power flows in the network.


A balance between the generation power sources and the load power sinks must be obtained to prevent the reference bus from having a P different from the desired value. The load or generation at one bus or several buses must be adjusted to achieve the desired results. An iterative procedure can be used to find the proper load, generation, and loss to meet the power balance requirement for the network. Since the losses are considerably smaller than the load or generation in a reasonable electric power system, the iterative procedure will converge very quickly. Two or three iterations are typical for any size of network.

Once the V vector has been found for a given P vector, the power flows everywhere in the network and losses of each circuit can be found easily. The losses occurring within each metered area are obtained simply by summing individual circuit losses within each area. Power flows at ties or utility interconnection points are easily determined.


The flows and losses of any two transactions can be combined and solved as one transaction. The sums of the results of any combination of transactions produces valid flow and loss answers. The reason these linear processes are possible is because the voltage profile of the network has been frozen allowing linear equations to describe the currents necessary to deliver the power from the generation sources to load sinks. The solution is similiar to the familiar short circuit calculations used by the electric utility industry. The main difference here is the objective of power matching for each bus, circuit, and entire network.

The initial computer runs during the early development of this thesis indicated the need for an autotransformer model. The relatively large voltage difference between the high and low side of the transformers were producing terms in the matrix that were not related to power. The voltage difference made the autotransformers appear to have a very high impedance to the flow of power in almost all cases except the base case. Figure 3 below shows the physical and equivalent models of the autotransformer.

Fig. 3.--Autotransformer model

or as a pi equivalent

The Y_1 term is not the impedance of the transformer, but rather the term that would be entered into the [W] matrix if the tap setting a, is unity. For reasons of simplification, the autotransformer will be considered as lossless and have no phase shifting capability. A complex circulating power S_c is introduced to allow the pi equivalent to have V_f and V_t be greatly different in voltage magnitude. The terms Y_1 , Y_2 , and Y_3 are derived in equations 15 through 18 in a form that can be directly inserted into [W]. Equation 15 is written by inspection using equation 14 as a guide.

$$Y_1 = \frac{P_{fb}}{\frac{V_{fb}}{a} - V_{tb}} = \frac{P_{fb} + S_c}{V_{fb} - V_{tb}}$$
 (15)

then solving for the circulating power

$$S_{c} = P_{fb} \left(\frac{V_{fb} - V_{tb}}{V_{fb}} - 1 \right)$$
 (16)

then the Y_2 and Y_3 elements are:

$$Y_2 = -S_c/V_{fb} \tag{17}$$

$$Y_3 = S_c/V_{tb}$$
 (18)

The shunt elements Y_2 and Y_3 are added only to the diagonal of [W]. Element Y_1 is entered like any other circuit into [W] although its value is calculated from equation 15. This model of the autotransformer has solved one problem and

created a set of new ones.

Implementation of the model as shown by equations

15 through 18 will result in a moderately small power mismatch
at the unregulated or "from" bus shown in figure 3 for transactions other than the base case. This problem can be corrected by modifying equation 18 as shown below in equation 19.

$$Y_3 = (S_c/V_{fb})(V_f/V_t)$$
 (19)

Now the shunt element Y₃ is a function of the transaction rather than being a constant. Test cases run by the author have shown that the linearity property of summing transaction solutions to produce other valid transactions no longer holds true if equation 19 is used.

Another problem with the autotransformer model is the injection of complex power into the network and its effect on the distribution of real power flows in the network. The inclusion of reactive powers in [P] will require additional analytical work to guarantee meaningful results.

With these weaknesses in mind, the author has elected to incorporate the autotransformer model into the large network program, and accept for the present time the small mismatch using equation 18. The 1178 bus example in the appendix uses this model. The 16 bus example treats the two autotransformers as ordinary circuits to demonstrate the other properties of bus power matching and linearity of transaction solutions more clearly.

Chapter V Conclusions

An algorithm has been developed in this thesis that allows utilities operating in a pool environment to separate the power flows and losses each is causing in the network. The need for this accounting procedure was outlined in chapter II. The desired characteristics sought were described in chapter III, and the technique was developed in chapter IV. This linear approach is easy to implement in a computer program but is probably more difficult to set up in a real time environment. Since a certain degree of arbitrariness is allowed in setting up a problem and solution of the sort in this thesis, the author recommends the following work be continued on this topic.

- Develop better models for the autotransformer and phase shifting transformer.
- 2. Exploit the reactive power into each bus for the objective of obtaining flow distributions that are closer to those obtained by running load flow cases with and without the transaction.
- 3. Develop a nonlinear loss assignment for each circuit that is more compatible with utility desires, or show that nonlinear allocations cannot meet all the power criteria described in chapter III.
- 4. Develop a power matrix equivalent that would allow the losses between pools to be calculated.

Appendix A

Definitions and Symbols

- a A real number representing the per unit tap setting of an autotransformer.
- Contract Path An agreement with several electrically interconnected utilities for the purpose of handling the accounting of wheeling power.
- F_{fb} A real number base case power flow into a circuit on the "from" end.
- Ftb A real number base case power flow into a circuit on the "to" end.
- F₃₂ The real number transaction power flow from bus 3 to bus 2 and measured at bus 3. Other circuit flows are subscripted according to the bus numbers used in the network.
- F_{32b} The base case value of F_{32} .
- Ib A complex number base case circuit current. Only the series impedance and bus voltages are used to find this quantity.
- Ih* The complex conjugate of Ih.
- I₁ A complex number current in the circuit for transaction 1. Other transaction currents are similiarly subscripted.
- Load Flow A solution to the nonlinear set of equations describing an electric power transmission network.
- [P] A column vector of real number bus powers representing a transaction.
- Pfb A real number base case power flow into an autotransformer on the adjustable tap side.
- P_L A real number transaction case circuit power loss.
- PLb A real number base case circuit power loss.

- Pooling The centralized planning and control of a group of locally interconnected utilities for the purpose of increasing the reliability and reducing the cost of power production and transmission expenses to the members.
- P3 A real number representing a transaction power into bus 3. Other bus powers are subscripted similiarly in accordance with the numbering scheme used in the base case load flow. The set of all bus powers for a transaction is the [P] vector.
- R The real number part of the complex number Z.
- S_c A constant complex number circulating power in the autotransformer model.
- Transaction In this thesis, a set of bus powers that algebraically sum to the portion of network loss caused by the circuit flows those bus powers create. For the electric utility industry, a contracted interchange power metered on the tie circuits between connected utilities.
- [V] A column vector of complex number bus voltages for a transaction.
- V_f A complex number transaction voltage at the "from" bus end of a circuit.
- ${
 m V}_{
 m fb}$ The base case version of ${
 m V}_{
 m f}.$
- V_t A complex number transaction voltage at the "to" bus end of a circuit.
- V_{tb} The base case version of $V_{t \cdot}$
- [W] A sparse nonsymmetrical square matrix of complex numbers developed in chapter IV.
- Wheeling The exchange of power between utilities for mutual benefit. The term is used more frequently for exchange power between pools and within interconnected systems not yet matured to a pool coordination status. The power will be in effect for a period of time making it an energy contract also.
- Y₁ A constant complex number series circuit element for an autotransformer that is put into the [W] matrix.

- Y₂ A constant complex number shunt circuit element for an autotransformer model that is added to the diagonal of [W] on the row representing the variable tap side of the autotransformer.
- Y3 A variable complex number shunt circuit element for an autotransformer that is added to the diagonal of [W] on the row representing the opposite side of the autotransformer from the variable tap side.
- Z A complex number circuit series impedance.

Appendix B

Large Network Example

The 1178 bus example has resulted from work performed for the Power Interchange Effects Task Force of the Texas Interconnected System Planning Subcommittee. Tables B-1 and B-2 have been prepared to summarize the results of the study since the data base and computer program source code are too lengthy to include in this thesis. A map of the Texas Interconnected System is shown in figure B-1.

Table B-1 shows 14 transactions (one per line) and the loss in megawatts caused in each of the 12 control areas for each transaction. The generation sources are from jointly owned plants and the loads are scaled within the receiving area for each transaction from those appearing in the load flow base case.

Two loss impacts are of large enough magnitude to warrant relief to those utilities carrying the additional loss. The DPL and TESC lignite generation cause considerable loss in the TPL area, and the COA portion of power from the Fayette plant causes loss within the LCRA area. In both of these cases the joint generation projects are remote from the areas receiving the power.

SUMMARY OF MW LOSS CAUSED BY TRANSACTION POWER FLOWS FOR THE 1981 SUMMER PEAK

GENERATION DESCRIPTION														TOTAL	
2351.4 MW-TPL LIGNITE														54.6	
369.5 MW-COMMANCHE PEAK	TPL	1.2	-0.2	2.2	ø.	ø.	-Ø.1	g.	-9.1	Ø.	9.1	ø.	ø.	3.1	
1056.9 NW-DPL LICHITE	DPL	23.3	9.2	2.9	9. 2	9.1	9.4	0.1	0.5	-0.1	9.6	9.2	9.	37.3	
252.4 MW-COMMANCHE PEAK	DPL	2.5	1.6	1.5	ø.	ø.	Ø.1	0.	6.1	9.	9.1	g.	ø.	5.8	
1670.9 NW-TESCO LIGNITE	TESC	38.7	4.2	18.2	-0.1	9.4	3.5	1.1	2.2	9.	1.3	Ø.2	₽.	69.8	
360.5 MW-COMMANCHE PEAK	TESC	3.6	Ø.1	5.3	ø.	Ø.1	₿.7	∌.2	9.4	ø.	0.2	g.	ø.	10.1	
385.6 MW-S TEX PROJ	HLP	-9.6	₽.	ø.	3.1	Ø.4	Ø.1	0.4	9.7	0.2	-0.2	ø.	ø.	4.8	
350.0 MW-S TEX PROJ	CPS	9.7	ø.	Ø.1	8.6	3.2	-9.2	8.6	9.7	9.7	6.2	0.3	ø.	7.6	
315.9 MW-S TEX PROJ	CPL	8. 5	ø.	∅.	6.4	1.5	-9.1	9.3	10.6	6.4	9.2	6,4	-Ø.1	14.9	
269.6 MW-S TEX PROJ	COA	1.1	Ø.	ø.	9.6	1.2	Ø.1	3.2	Ø. 5	2.5	9.2	-Ø.i	ø.	9.1	
555.7 MW-FAYETTE	COA	2.7	6.1	Ø.	₽.2	1.1	-0.4	12.2	0.3	7.5	9.2	Ø.	ø.	23.9	
200.7 MW-SAN MIGUEL	TMPP	3.2	€.	₫.	0.7	-6.8	3.4	1.1	9.4	Ð.	2.8	9.1	8.8	8.7	
108.2 MW-COMMANCHE PEAK	THPP	1.2	-0.1	8.8	₽.	ø.	Ø.	Ø.	3.	ø.	1.3	g.	9.	3.4	
200.7 MW-SAN MIGUEL	STEC	ø.	ø.	g.	Ø.	-B.Z	9.	-0.1	-1.2	-Ø.1	8.	5.4	8.6	4.4	

Table B-1

Table B-2 shows the total generation of each utility as a transaction for all areas except MIG. It was omitted since no load appeared within the area in the base case load flow. The bottom line shows the base case load flow solution loss within each area.

Notice that the sum of all transaction losses of a column doesn't sum precisely to the base case loss of an area. This is due to the manner in which the loads were adjusted to obtain a power balance for each transaction. If the loads had been held constant and the generation adjusted, the same problem would have occurred. Comparing the right hand column with the bottom rcw of table B-2 shows that an adjustment should be made to the net interchange of each area in the base case load flow to compensate for the losses incurred by the simultaneous set of transactions. Resolving the load flow with this adjustment and performing the interchange adjustment in the real world at the same time will satisfy the accounting criteria and will allow the sum of all transaction losses to agree with the load flow base case. If the losses are calculated at a later time rather than in real time, this problem will be a continuous headache of the accounting personnel. The small error will probably be spread among all the utilities by some arbitrary agreement. The best operating environment would be the continuous compensation for losses in real time by making small interchange adjustments.

TOTAL MW LOSS CAUSED BY THE OPERATION OF ALL LOAD AND GENERATION IN EACH AREA

CENERATION DESCRIPTION	LOAD	TPL	DPL	TESC	HLP									TOTAL
6637.5 MW-ALL TPL	TPL	95.8	4.6	11.9	0.6	Ø.3	1.2	1.9	Ø.7	0.1	4.8	6.3	g.	120.8
2910.3 MW-ALL BPL	DPL	27.9	21.7	4.1	9.2	9.1	₽.4	9.	0.4	g.	0.6	9.2	9.	54.6
4613.4 MW-ALL TESCO	TESC	43.5	4.5	43.8	ø.	6.4	4.1	1.2	2.2	ø.	1.5	0.2	g.	191.5
11221.4 MW-ALL HLP	HLP	-9.7	0.2	-0.2	194.8	0.6	-9.1	6.4	1.4	9.2	-8.2	-Ø.1	ø.	195.3
2365.1 MW-ALL CPS	CPS	Ø.8	8.1	-Ø. 1	₩.5	21.1	-0.2	9.8	1.3	Ø.7	9.2	9.3	8.	25.5
948.9 MW-ALL WTU	WTU	-6.8	g.	1.2	-Ø.1	9.2	26.6	1.4	Ø.6	Ø.1	-9.2	Ø.	ā.	28.9
1268.6 MW-ALL LCRA	LCRA	0.6	ø.1	0.	g.	1.4	-8.3	21.1	0.2	1.7	Ø.1	-9.2	Ø.	24.7
2732.1 MW-ALL CPL	CPL	Ø.8	9.2	-0.2	6.4	2.2	-0.3	8.8	69.2	9.4	9.2	2.7	ø.	76.4
928.1 MW-ALL COA	COA	3.8	9.1	-0.1	9.8	2.3	-9.5	15.8	9.8	19.9	6.5	-0.1	ø.	34.3
1324.1 MW-ALL TMPP	TMPP	16.5	9.2	9.4	-0,3	-0.3	Ø.9	1.8	1.1	9.3	24.3	9.2	9.8	45.9
310.3 MW-ALL STECMEC	STEC	ø.	ø.	Ø.	ø.	-0.4	ø.	-0.1	-1.3	-9.1	9.	8.2	9.6	6.9
35251.9 MW-TIS BASE CASE		189.2	31.4	60.31	197.3	27.7	32.2	45.7	77.4	14.4	32.9	9.8	1.5	629.7

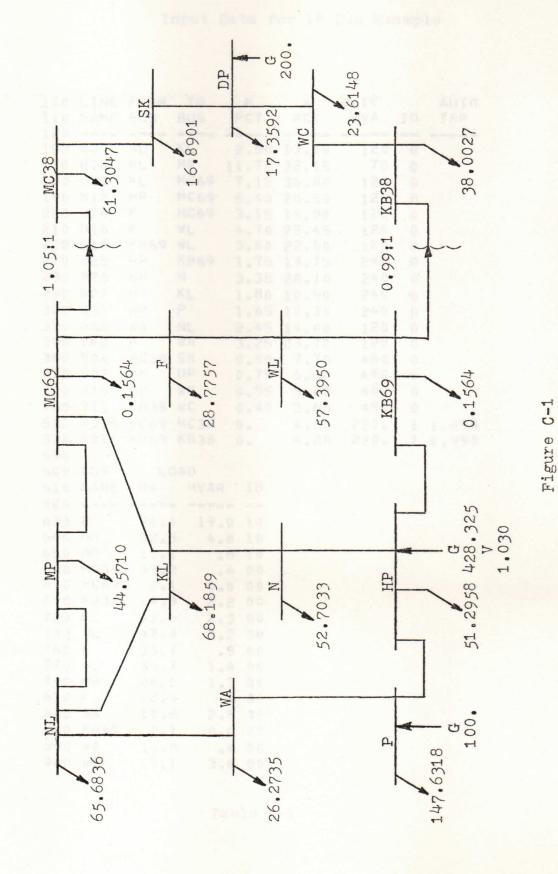
Table B-2

MAJOR TRANSMISSION NETWORK FINTERCONNECTED SYSTEMS IN TEXAS PROPOSED 1978-1987 ADDITIONS

(FOR SYSTEM PLANNING PURPOSES ONLY)

FEBRUARY 17, 1978

Fig. B-1


Appendix C

Small Network Example

The 16 bus network shown in figure C-1 has been designed to test the losses allocation technique under adverse conditions. The network has large reactive flows, lossy circuits, and large voltage gradients. The computer program listing in appendix D was used to prepare all the reports shown in appendix C. The input data and base case load flow solution are shown in tables C-1 and C-2.

The three transaction cases shown in tables C-4, C-5, and C-6 can be summed to verify they produce the base case flows and losses shown in table C-3. Tables C-7, C-8, and C-9 are load flow solutions modeling the transactions shown in tables C-4, C-5, and C-6 respectively.

A 16 Bus Example Network

100 110 120	LINE	FROM BUS	TO BUS	PCT	X PCT	RATE	ID	AUTO TAP
160	809	NL	KL	2.50	13.05	120	0	THE P
170	810	NL	MP	11.70	32.15	70	0	
180	811	KL	MC69	7.15	36.80	120	0	
190	812	MP	MC69	5.40	28.50	120	0	
200	814	F	MC69	3.15	16.90	120	0	
210	816	F	ML	4.70	25.45	120	0	
220	818	KB69	WL	3.80	22.50	120	0	
270	825	HP	KB69	1.75	13.75	240	0	
280	826	HP	N	3.35	20.10	240	0	
290	827	N	KL	1.80	10.90	240	0	
320	831	HP	P	1.65	12.30	240	0	
330	866	P	NL	2.45	14.00	120	0	
360	904	MC38	WA SK	3.25	23.70	120	0	
370	902	SK	DP	0.75	7.70	480	0	
400	910	DP	WC	0.55	5.00	480	0	
460	911	KB38	WC	0.40	3.65	480	0	
510	MCTF	MC69	MC38	0.	4.60	220.	1	1.050
520	KBTF	KB69	KB38	0.	4.28	220.	î	0.990
590			0.	HE			17	4.1
600	BUS	L	DAD					
610	NAME	MW	MVA	RID				
620				-				
630	P	94.	4 19	.0 10				
640	HP	32.8	8 4	.8 10				
650	DP	11.		.8 10				
660	MC38	39.		.4 00				
670	MC69	0.		.0 00				
690	KB38	24		.2 00				
720	KL	43.		.3 00				
730	NL	42.		.2 00				
750 770	WL	33.		9 00				
790	MP	36.		.4 00				
810	F	18.		.3 00				
820	SK	10.		.8 00		40		
840	KB69	0.		.0 00				
890	WA	16.		.4 00				
900	WC	15.		.6 00				

Table C-1

COMMAND NUMBER ? 4

X	BUS	S DATA	X			LINE FL	OWS		X
FROM				ТО	CKT	MW	MVAR	PCT	AUTO
DP	VOLT	0.921	-6.1			140.	59.	34 -	
		200.	50.	WC	910	43.	-11-	10-	
		17.	2.			1021	341		
F	VOLT	0.861	-23-0	MC69	814	-11.	-2.	11	
		0.	0 -	WL	816	-11.	0.	17.	
		29.	2.		666			49.	
HP	VOLT	1 030	0 0	VOZO	005				
nr	GEN	428.	0.0	N 069	825	100. 148.	65.	48.	
			220.	14	020	148.	15.	66.	
	LUAD	51.	11.	P	831	129.	76.	61.	
Kb38	VOLT	0.932	-8.1	WC	911	-19.	20.	6.	
	GEN	0.	0.	K869	KBTF	-19.	-25.	15.	
	LOAD	38.	5.						
KAAQ	VOLT	0.934	7 5	1./1	010	70	21	72	
			-(.5	MC	010	78. -98.	17	12.	
	1040	0.	0.	KROO	KRTE	-90.	26	40.	0 000
	LUAD	0.	0.	ND3h	KBIL	19.	20.	10.	0.990
KL	VOLT	0.847	-24.4	NL	809	26.	5.	27.	
	GEN	0.	0.	MC69	811	-10.	-3.	10.	
	LOAD	68.	5.	N	827	-85.	-8.	42.	
мСЗА	VOLT	0.837	-19.5	SK	904	-119.	-18	3.0	
		0.	0 -	MC69	MCTE	58.	18.	33.	
	LOAD	61.	1.			-		000	
MCE9		0.869		KL	811	10.	3.	10.	
	GEN	0.	0.	MP	812	37.	10.	36.	
	LOAD	() .	0.	F	814	11.	2.	11.	
				MC38	MCTF	-58.	-15.	31.	1.050
MP	VOLT	0.823	-29.6	NL	810	-9.	1.	16.	
	GEN					-36.			
		45.	3.					.,	
N	VOLT	0.882	-17 4	нр	826	-139.	21	66	
	GEN		0.	KL		86.			
		53.	2.		021	00.	17.	46.	
	-01.0		€ •						

Table C-2

NL	GEN	0.832		KL MP ₩A	809 810 866	-26. 9. -49.	-1.	27. 16. 49.
ρ	GEN	0.929 100. 148.		НР ИА	831 862	-126. 78.		
SK	GEN	0.873 0. 17.		MC38 DP	904 902	121. -138.		
WA	GEN	0.854 0. 26.	0.	NL P				49. 74.
wC	GEN		-7.6 0. 8.	0P K838			12.	
WL	GEN	0.871 0. 57.	0.	F KB69		18. -76.		17.

COMMAND NUMBER ? 1

END OF JOB

Table C-2 cont.

1,1964 -1.75, 11

9690 769

1962 57

1.00

Base Case Condition

```
GENERATOR NAME
                   ? ALL
                                                    2.8324830E+01
SYS MW MISMATCH AND MW LOSS
                                 2.8324830E+01
                                                    2.8324830E+01
SYS MW MISMATCH AND MW LOSS
                                 0.
MISMATCH AT EACH BUS
P
       -0.0000
HP
       -0.0188
DP
         0.0000
MC38
         0.0000
MC69
        -0.0000
KB38
         0.0000
KL
        -0.0000
NL
        -0.0000
N
        -0.0000
WL
         0.0000
MP
        -0.0000
F
         0.0000
SK
        -0.0000
        -0.0000
K669
WA
        -0.0000
WC
        -0.0000
CIRCUIT FLOWS AND LOSSES
                                           0.2547
                              26.4867
309
     NL
           KL
                  -26.2320
                              -8.9686
                                           0.1412
           MP
                    9.1098
810
      NL
           MC69
811
      KL
                  -10.1536
                               10.2638
                                           0.1102
                  -35.6024
                               36.6265
                                           1.0241
812
      MP
           MC69
                  -10.8019
      F
           MC69
                               10.8532
                                           0.0514
814
           WL
                  -17.9738
                               18.1789
                                           0.2051
816
      KB69
                   78.4430
                             -75.5739
                                           2.8691
815
           WL
                             -97.7398
                                           2.3525
825
      HP
           KB69
                  100.0922
      HP
                  147.5401 -139.0289
                                           8.5112
826
```

N

KL

P

NL

WA

DP

WC

MC38 SK

KH38 WC

827

831

866

862

904

902

910

911

N

MP

M A

SK

DP

MCTF MC69 MC38

KBTF KB69 KB38

86.3256

49.3980

78.2507

42.6375

-18.8623

-57.8999

19.1404

-119.2047

-137.9660

129.3966 -125.8826

-84.5190

-48.5614 -75.6714

121.0759

140.0032

-42.5124

18.8976

57.8999

-19.1404

1.8066

3.5141

0.8366

2.5793

1.8712

2.0372

0.1251

0.0353

0.0000

0.0000

DP Generation

```
GENERATOR NAME
                   ? DP
SYS MW MISMATCH AND MW LOSS
                                 5.3045858E+00
                                                   5.3045858E+00
SYS MW MISMATCH AND MW LOSS
                                -2.7463311E-01
                                                   5.0299526E+00
SYS MW MISMATCH AND MW LOSS
                                 1.4218450E-02
                                                   5.0441711E+00
SYS MW MISMATCH AND MW LOSS
                                -7.3611736E-04
                                                   5.0434350E+00
MISMATCH AT EACH BUS
       -0.0000
HP
         0.0007
UP
        -0.0000
MC38
       -0.0000
MC69
       -0.0000
KB38
        -0.0000
KL
       -0.0000
NL
         0.0000
N
        -0.0000
WL
         0.0000
MP
         0.0000
F
         0.0000
SK
         0.0000
K064
        -0.0000
WA
         0.0000
WC
         0.0000
CIRCUIT FLOWS AND LOSSES
809
     NL
           KL
                  -10.3721
                              10.4728
                                          0.1007
810
           MP
     NL
                  -13.2671
                              13.0615
                                         -0.2056
                  -27.6003
811
     KL
           MC69
                              27.8999
                                          0.2996
312
     MP
           MC69
                  -25.4749
                              26.2077
                                          0.7328
                   -6.9909
814
           MC69
                               7.0241
                                          0.0332
     F
816
           WL
                   -1.0234
                               1.0351
                                          0.0117
318
     KB69
           WL
                   17.6662
                             -17.0201
                                          0.6451
           KB69
825
     HP
                  -76.1454
                             74.3558
                                         -1.7896
826
                   17.5960
     MP
           N
                             -16.5810
                                          1.0151
827
           KL
                    1.9026
                             -1.8628
                                          0.0398
     HP
           P
831
                   44.2623
                             -43.0603
                                          1.2021
866
     WA
           NL
                   -5.4379
                               5.3458
                                         -0.0921
     P
568
           WA
                    1.9436
                              -1.8795
                                          0.0641
                              79.4774
904
     MC38 SK
                  -78,2491
                                          1.2283
902
     SK
           DP
                  -84,1815
                              85.4245
                                          1.2430
910
     UP
           WC
                  109.7408 -109.4188
                                          0.3220
911
     KB38 WC
                 -102.6496
                            102.8419
                                          0.1923
     MC69 MC38
                              61.1753
```

92.0655

0.0000

-0.0000

-61.1753

-92.0655

KUTF KE69 KB38

HP Generation

```
GENERATOR NAME
                   3 HP
SYS MW MISMATCH AND MW LOSS
                                 2.2174583E+01
                                                   2.2174583E+01
       MISMATCH AND MW LOSS
                                -1.1480398E+00
                                                   2.1026543E+01
SYS MW MISMATCH AND MW LOSS
                                 5.9437275E-02
                                                   2.1085980E+01
SYS MW MISMATCH AND MW LOSS
                                -3.0770302E-03
                                                   2.1082903E+01
SYS MW MISMATCH AND MW LOSS
                                 1.5902519E-04
                                                   2.1083062E+01
MISMATCH AT EACH BUS
       -0.0000
HP
       -0.0001
DP
         0.0000
MC38
       -0.0000
MC69
         0.0000
KB38
         0.0000
KL
        -0.0000
INL
         0.0000
N
        -0.0000
WL
        -0.0000
MP
        -0.0000
F
         0.0000
SK
        -0.0000
K069
        -0.0000
WA
        -0.0000
wC
        -0.0000
CIRCUIT FLOWS AND LOSSES
809
     NL
                  -21.9265
           KL
                              22.1393
                                          0.2129
510
     NL
           MP
                   15.0559
                             -14.8226
                                          0.2333
311
     KL
           MC69
                   12.3150
                             -12.4486
                                         -0.1337
812
     MP
           MC69
                  -11.1065
                              11.4260
                                          0.3195
014
           MC69
                   -1.5266
                               1.5339
                                          0.0073
316
     F
           WL
                  -15.2136
                              15.3871
                                          0.1736
818
     KB69
           WL
                   50.6283
                             -48.7765
                                          1.8518
025
     HP
           KB69
                  147.1715 -143.7126
                                          3.4590
958
     HP
                  112.8772
           N
                            -106.3656
                                          6.5116
           KL
527
     N
                   75.7056
                             -74.1212
                                          1.5844
     HP
031
           P
                  138.4162 -134.6572
                                          3.7590
866
     WA
           NL
                   31.8806
                             -31.3407
                                          0.5399
352
     P
           WA
                   48.7728
                             -47.1651
                                          1.6077
904
     MC38
           SK
                  -36.2661
                              36.8354
                                          0.5693
902
     SK
           DP
                  -46.6611
                              47.3501
                                          0.6890
     UP
           WC
                  -57.4489
910
                              57.2803
                                         -0.1685
911
     KH3H WC
                   70.8854
                             -71.0182
                                         -0.1328
```

0.6022

-92.9933

0.0000

0.0000

-0.6022

92.9933

MCTF MC69 MC38

P Generation

```
GENERATOR NAME
                   3 b
SYS MW MISMATCH AND MW LOSS
                                 2.3111415E+00
                                                   2.3111415E+00
SYS MW MISMATCH AND MW LOSS
                                -1.1965448E-01
                                                   2.1914870E+00
SYS MW MISMATCH AND MW LOSS
                                 6.1951280E-03
                                                   2.1976821E+00
SYS MW MISMATCH AND MW LOSS
                                -3,2088161E-04
                                                   2.1973612E+00
MISMATCH AT EACH BUS
P
        -0.0000
HP
         0.0003
DP
         0.0000
MC38
        -0.0000
MC69
         0.0000
KB38
        -0.0000
KL
        -0.0000
NL
         0.0000
N
        -0.0000
WL
        -0.0000
MP
        -0.0000
F
         0.0000
SK
         0.0000
KB69
         0.0000
WA
        -0.0000
WC
        -0.0000
CIRCUIT FLOWS AND LOSSES
809
      NL
           KL
                    6.0675
                              -6.1264
                                         -0.0589
           MP
                                           0.1134
810
      NL
                    7.3203
                              -7.2069
                                         -0.0557
           MC69
                              -5.1869
811
      KL
                    5.1312
      MP
                                          -0.0282
812
           MC69
                    0.9795
                              -1.0077
                   -2.2843
                               2.2952
           MC69
                                           0.0109
814
816
           WL
                   -1.7362
                               1.7560
                                           0.0198
                              -9.7751
                                           0.3711
818
      KH69 WL
                   10.1462
                   29.0593
                             -28.3763
                                           0.6830
825
      HP
           KB69
826
      HP
           N
                   17.0617
                             -16.0775
                                           0.9842
           KL
                                           0.1824
327
      N
                    8.7139
                              -8.5315
      HP
                  -53.2883
                              51.8411
                                          -1.4472
831
           NL
                   22.9538
                             -22.5650
                                           0.3887
866
      WA
                                           0.9075
                   27.5321
                             -26.6246
802
            WA
904
      MC38 SK
                   -4.6878
                               4.7614
                                           0.0736
50E
      SK
            DP
                   -7.1212
                                7.2264
                                           0.1052
            WC
                                          -0.0283
      UP
                   -9.6518
                                9.6234
710
911
      KB38 WC
                   12.8987
                             -12.9228
                                          -0.0242
```

3.8776

18.2083

-3.8776

-18.2083

0.0000

0.0000

MCTF MC69 MC38

Load Flow for DP Generation

```
GENERATOR NAME
                   ? ALL
SYS MW MISMATCH AND MW LOSS
                                  4.8409184E+00
                                                    4.8409184E+00
SYS MW MISMATCH AND MW LOSS
                                  0.
                                                    4.8409184E+00
MISMATCH AT EACH BUS
         0.0000
HP
         0.0026
DP
         0.0000
MC38
        -0.0000
MC69
         0.0000
KB38
        -0.0000
KL
        -0.0000
NL
         0.0000
N
         0.0000
WL
        -0.0000
MP
         0.0000
F
         0.0000
SK
        -0.0000
KB69
         0.0000
MA
        -0.0000
WC
         0.0000
CIRCUIT FLOWS AND LOSSES
809
     NL
           KL
                  -11.0146
                              11.0491
                                           0.0345
310
           MP
     NL
                  -13.9306
                              14.1583
                                           0.2277
811
     KL
           MC69
                  -29.0859
                              29.6873
                                           0.6014
812
     MP
           MC69
                  -26.8929
                              27.2703
                                           0.3774
814
     F
           MC69
                   -8.1962
                               8.2219
                                           0.0257
816
           WL
                   -0.0254
                               0.0318
                                           0.0063
818
     KB69
           WL
                   16.5280
                             -16.4303
                                           0.0977
825
     HP
           K869
                  -70.3156
                              71.1413
                                           0.8257
826
     HP
           N
                   16.5983
                             -16.5049
                                           0.0935
827
     N
           KL
                    1.4468
                              -1.4449
                                           0.0019
831
     MP
           P
                   43.9022
                             -43.5206
                                           0.3817
866
     WA
           NL
                   -6.1681
                               6.1784
                                           0.0104
     P
352
           WA
                    1.3400
                              -1.3386
                                          0.0014
904
     MC38 SK
                  -82.7398
                              83.3774
                                           0.6377
902
     SK
           UP
                  -88.2032
                              88.8046
                                           0.6014
     DP
910
           WC
                  106.2356 -105.6747
                                          0.5610
911
     KH38 WC
                  -98.5719
                              98.9276
                                          0.3557
MCTF MC69 MC38
                  -65.2241
                              65.2241
```

Table C-7

87.7140

-87.7140

KBTF KH69 KB38

0.0000

0.0000

Load Flow for HP Generation

```
GENERATOR NAME
                   ? ALL
SYS MW MISMATCH AND MW LOSS
                                 1.6106452E+01
                                                   1.6106452E+01
SYS MW MISMATCH AND MW LOSS
                                                   1.6106452E+01
                                 0.
MISMATCH AT EACH BUS
P
       -0.0000
HP
        -0.0114
UP
         0.0000
MC38
         0.0000
MC69
         0.0000
KB38
        -0.0000
KL
         0.0000
NL
         0.0000
N
         0.0000
WL
        -0.0000
MP
        -0.0000
F
         0.0000
SK
        -0.0000
K869
         0.0000
WA
        -0.0000
WC
         0.0000
CIRCUIT FLOWS AND LOSSES
309
                  -20.9314
                              21.0594
     NL
           KL
                                           0.1280
810
     NL
           MP
                   15.2563
                             -14.9364
                                           0.3200
           MC69
                             -13.1893
                                           0.1475
811
     KL
                   13.3369
812
     MP
           MC69
                  -10.5328
                              10.6104
                                           0.0777
814
           MC69
                   -1.9585
                               1.9663
                                           0.0079
     F
           WL
816
                  -14.4848
                              14.6090
                                           0.1242
     KB69 WL
                                           1.0169
318
                   48.4230
                             -47.4062
825
     HP
           KH69
                  142.5953 -138.5895
                                           4.0059
826
     HP
           N
                  108,6700 -104,5922
                                           4.0778
827
           KL
                             -73.3597
     N
                   74.4761
                                           1.1164
           P
831
     HP
                  135.5292 -132.3514
                                           3.1778
                                           0.2907
866
      MA
           NL
                   32.1491
                             -31.8584
862
     P
                   47.9903
           WA
                             -47.1625
                                           0.8279
904
     MC38 SK
                  -34.5081
                              34.6548
                                           0.1467
           UP
902
                  -44.3062
                              44.5032
                                           0.1970
     SK
                  -54.4227
910
     DP
           WC
                              54.6328
                                           0.2101
911
      KB38 WC
                   68.3613
                             -68.1270
                                           0.2342
```

Table C-8

-0.5232

-90.0771

0.0000

0.0000

0.5232

90.0771

MCTF MC69 MC38

Load Flow for P Generation

```
? ALL
GENERATOR NAME
                                 1.2235164E+00
                                                   1.2235164E+00
SYS MW MISMATCH AND MW LOSS
SYS MW MISMATCH AND MW LOSS
                                                    1.2235164E+00
                                  0.
MISMATCH AT EACH BUS
         0.0000
HP
         0.0002
DP
        -0.0000
MC38
         0.0000
MC69
         0.0000
        -0.0000
KB3B
KL
        -0.0000
NL
         0.0000
N
         0.0000
WL
        -0.0000
MP
        -0.0000
F
         0.0000
SK
        -0.0000
KB69
         0.0000
WA
        -0.0000
WC
         0.0000
CIRCUIT FLOWS AND LOSSES
809
      NL
           KL
                     6.4759
                               -6.4660
                                           0.0099
           MP
810
      NL
                     7.3325
                               -7.2702
                                           0.0623
311
      KL
           MC69
                     5.2468
                               -5.2246
                                           0.0222
                               -0.8997
812
      MP
           MC69
                     0.9029
                                           0.0032
814
           MC69
                   -2.9032
                                2.9117
                                           0.0084
      F
                   -1.2076
                                1.2158
816
           WIL.
                                           0.0082
318
      K869
           WL
                     9.4523
                               -9.4151
                                           0.0372
      HP
625
           KH69
                   28,9539
                             -28.7897
                                           0.1642
826
      HP
                   16.1458
                              -16.0634
           N
                                           0.0824
827
      N
                     8.5344
                               -8.5216
           KL
                                           0.0128
      HP
831
                  -51.2041
                               51.6168
                                           0.4127
866
      WA
           NL
                   23.3165
                              -23.1918
                                           0.1247
      P
                              -27.0699
862
                   27.2930
                                           0.2231
           WA
904
      MC38
           SK
                   -5.5676
                                5.5787
                                           0.0111
902
      SK
           DP
                   -7.9915
                                8.0053
                                           0.0137
      DP
           WC
910
                  -10.4852
                               10.4982
                                           0.0130
911
      KB38 WC
                   13.8861
                              -13.8718
                                           0.0143
```

Table C-9

3.1903

19.3150

-3.1903

-19.3150

0.0000

0.0000

MCTF MC69 MC38

Appendix D

Program Source Listing

```
* POWER SYSTEM LOADFLOW PROGRAM - USING ZBUS SOLUTION
          DIMENSION NCR(10) . NML(51) . NMF(51) . NMT(51) . NMB(36) . TAP(51) .
                                    RAT(51), IDL(51), PL(36), IB(35), IC(35),
8
                                    QL (36), IDBG (36), IDBT (36), JDL (51)
8
6
          •PF(50) •P2(50) •P(35)
          COMPLEX ZL(51), ZB(35, 36), G(35), TF(35), LD(35), ZA(35), AS(35),
                               A(35), V(35), VO(35), ZD, S, LF, W(35, 36)
          EQUIVALENCE (ZB,W)
          FILENAME DATA
          DATA IS.NCR.J.N. IBC, PT. OT, ZB, IALL
                      /11*" ".0.1.1.0.,0..1260*(0.,0.),"ALL "/
8
    ZB(1,1)=(.0002,0.)
          ML=50; MB=35
   00 65 I=1.MB
          IB(I)=0
                                       THE REAL PROPERTY OF THE PROPE
          G(I) = (0.,0.)
  65 TF(I) = (0..0.)
          PRINT, "DATA FILE NAME "
          READ, DATA
          READ (DATA . 15) LN
   15 FORMAT(A1//)
          PRINT 1
     1 FORMAT(1H)
         00 \ 4 \ I=1,10
          PRINT 2
     2 FORMAT (1H+."REMOVE CIRCUIT ")
          READ 3,NCR(I)
     3 FORMAT (A4)
           IF (NCR(I), EQ. IS) GO TO 6
     4 CONTINUE
* PEAD LINE DATA BUT SKIP REMOVED CIRCUITS
      6 J=J+1
          READ (DATA, 7) LN, NML (J), NMF (J), NMT (J), ZL (J), RAT (J), IDL (J), TAP (J)
           IF (TAP(J).EQ.O.) TAP(J)=1.0
          TAP (J) = 1 . / TAP (J)
      7 FORMAT (13,3(1X,A4),3F6.0,13,F6.3)
 * CONVERT Z TO PER UNIT ON A 1 MVA BASE
           7L(J)=ZL(J)/10000.
           IF (NML (J) . EQ. IS) GOTO 9
           IF (J.LE.ML) GOTO 8
       PRINT, "EXCESSIVE NUMBER OF CIRCUITS": STOP
      8 DG 10 I=1.10
          IF (NCR(I) . NE . NML(J)) GO TO 10
           NCH(I)=IS ; J=J-1 ; GO TO 6
    10 CONTINUE
       GO TO 6
```

```
* CHECK TO SEE THAT ALL REMOVED CIRCUITS WERE REMOVED
  9 NL=J-1
    DO 11 I=1.10
    IF (NCR(I) . EQ. IS) GO TO 11
    PRINT 12, NCR(I) ; STOP
 12 FORMAT (" REMOVED CIRCUIT ", A4," WAS NOT FOUND")
 11 CONTINUE
* CONTINUE REQUESTS FOR DATA
    PRINT, "SYS MW MVAR LOAD "
    READ, SYSL, SYSX
    PRINT. "SWING GENERATOR "
    READ 3.NM
    PRINT 57
 57 FORMAT (1H+, "BUS VOLTAGE (PU) ")
    READ, VSG
    PRINT 1
    READ (DATA, 15) LN
* READ BUS DATA BUT OMIT BUSES WITH NO CIRCUITS
    J=0
 17 J=J+1
    READ (DATA, 13, FND=14) LN, NMB (J), PL (J), QL (J), IDBG (J), IDBT (J)
 13 FORMAT(13,1X,A4,2F6.0,1X,211)
    IF (J.LE. MB) GOTO 5
    PRINT, "EXCESSIVE NUMBER OF BUSES": STOP
  5 DO 16 I=1.NL
    IF (NMB (J) . EQ . NMF (I) ) GO TO 18
    IF (NMB(J).EQ.NMT(I)) GO TO 18
 16 CONTINUE
    J=J-1 ; GO TO 17
 18 PT=PT+PL(J)
    QT=QT+QL(J)
    IF (NM.EQ.NMH(J)) IDBG(J)=2
    IF (IDBG(J).EQ.O) GOTO 17
    IF (NM.NE.NMB(J)) GO TO 19
    IB(J)=1 : A(J)=CMPLX(VSG*5000..0.) : GOTO 17
 19 PRINT 20, NMB (J)
 20 FORMAT (1H+ . A4 . " MW MVAR GEN ")
    READ, G(J) ; GOTO 17
* ADJUST LOADS, INITIALIZE A, AND READ TIE FLOW VALUES
 14 NB=J-1
    PRINT 1
    DO 30 I=1.NB
    PL(I)=PL(I) *SYSL/PT ; QL(I)=QL(I) *SYSX/QT
     LD(I) = CMPLX(PL(I),QL(I))
     IF (IDBT(I), EQ. 0) GOTO 21
     PRINT 22. NMH(I)
  22 FORMAT (1H+, A4, " MW MVAR TIE ")
     READ. TF (I)
  21 IF (IDBG(I).EQ.2) GOTO 30
     S=(G(I)-TF(I)-LD(I))
     A(I)=CONJG(S)
  30 CONTINUE
```

```
* NUMBER BUSES BY LOOKING FOR LINE CONNECTIONS
    00 27 K=2.NB
    DO 53 I=1.NF
  . IF(IDL(I).EQ.2) GO TO 23
    IF (NM. EQ. NMF (I)) GO TO 24
    IF (NM. NE. NMT (I)) GO TO 23
    NM1=NMF(I) ; GO TO 26
 24 NM1=NMT(I)
 26 DO 25 J=1,NB
    IF (NM1 . NE . NMB (J) ) GO TO 25
    IF (IB(J).GT.0) GO TO 23
    N=N+1
    IB (J) = N
    IF (N-NB) 23,28,28
 25 CONTINUE
 23 CONTINUE
    DO 29 I=1,NB
    IF (IB(I) . NE . K) GO TO 29
    NM=NMB(I) ; GO TO 27
 29 CONTINUE
    PRINT. "ISOLATED BUS(S) "; STOP
 27 CONTINUE
    STOP
*CHANGE BUS NAMES TO BUS NUMBERS LISTED IN TABLE IB
 28 DO 31 I=1,NL
    DO 32 J=1.NB
    IF (NMF (I) . NE . NMB (J)) GO TO 32
    NMF(I) = IB(J) : GO TO 33
 32 CONTINUE
    GOTO 67
 33 DO 34 J=1.NB
    IF (NMT (I) . NE . NMB (J)) GO TO 34
    NMT(I)=IB(J) ; GO TO 31
 34 CONTINUE
 67 PRINT 68, NML (I); STOP
 68 FORMAT (" ILLEGAL BUS NAME; CIRCUIT ", A4)
 31 CONTINUE
* MAKE THE TO BUS NUMBER GREATER IN THE LINE DATA
    DO 41 I=1,NL
    JDL(I) = NMF(I) *10+IDL(I)
    IF (NMF(I).LT.NMT(I)) GOTO 41
    J=NMF(I)
    NMF(I)=NMT(I)
    NMT(I)=J
 41 CONTINUE
* CREATE TABLE IC, THE REVERSE OF TABLE IB
    DO 50 I=1,NB
    DO 51 J=1.NB
    IF (I.NE. 18 (J)) GO TO 51
    IC(1)=J : GO TO 50
 51 CONTINUE
    STOP
 50 CONTINUE
```

```
* SEARCH THROUGH LINE TABLES SELECTING LINES FOR ZBUS
    N=2
    DO 36 NF=1.NB
    DO 35 I=1.NL
    IF (NMF (I) . NE. NF) GO TO 35
    IF (IDL(I).EQ.2) GO TO 35
    NT = NMT(I); M = N - 1
    IF (NT.LT.N) GO TO 37
* ADD BRANCHES TO ZBUS MATRIX
    DO 38 J=1.M
    ZB(J,N) = ZB(J,NF)
 38 ZB(N,J)=ZB(J,N)
    ZB(N,N) = ZL(I) + ZB(NF,NF)
    N=N+1 ; GO TO 35
* ADD LINKS TO ZBUS MATRIX
 37 DO 39 J=1.M
 39 ZA(J)=ZB(J,NT)-ZB(J,NF)
    ZD=ZL(I)+ZA(NT)-ZA(NF)
    ZD=1./ZD
    DO 40 J=1.M
    DO 40 K=J.M
    ZB(J,K)=ZB(J,K)-ZD*ZA(J)*ZA(K)
 40 ZB(K,J)=ZB(J,K)
 35 CONTINUE
 36 CONTINUE
* ITERATE UNTIL BUS POWERS AND VOLTAGES ARE SATISFIED
 73 M=1
    DO 42 I=1,100
    DO 43 J=1.NB
    AS(J)=0.
    ZD= (0.00.)
    DO 44 K=1.NB
 44 ZD=ZD+ZB(IB(J),IB(K))*A(K)
 43 V(J)=ZD
    IF (M.EQ.NB) GO TO 45
    ITER=I;M=1
* SUM UP SHUNT FLOWS FOR AUTO AND STORE IN AS
    DO 116 J=1.NL
    IF (TAP (J) . EQ. 1 . . OR . IDL (J) . NE. 1) GOTO 116
    IF (JOL (J)/10.EQ. NMF (J)) GOTO 121
    NF=IC(NMT(J));NT=IC(NMF(J));GO TO 122
 121 NF=IC(NMF(J)); NT=IC(NMT(J))
 122 T1=1.+TAP(J); T2=1.-TAP(J)
    AS (NF) = AS (NF) + CONJG ((V(NF) *T1-V(NT)) *T2/ZL(J)) *V(NF)
    AS(NT)=AS(NT)+CONJG(-T2*V(NF)/ZL(J))*V(NT)
 116 CONTINUE
    M=1
    DO 46 J=1,NB
    IF (IDBG(J).EQ.2) GOTO 47
    ZD=(G(J)+AS(J)-TF(J)-LD(J))
    S=ZD-V(J) *CONJG(A(J))
    D=CABS(S)
```

```
IF (D.LT..01) M=M+1
    A(J) = .5*(A(J) + CONJG(ZD/V(J)))
    GO TO 46
 47 A(J) = CMPLX(VSG.O.) *A(J)/V(J)
 46 CONTINUE
 42 CONTINUE
    PRINT, "CASE DID NOT CONVERGE"
 45 PRINT 49, ITER
 49 FORMAT (" TOTAL ITERATIONS =", 13)
    I=IC(1)
   G(I) = V(I) * CONJG(A(I) - 5000 . * V(I))
   G(I) = G(I) + LD(I) + TF(I) - AS(I)
    IF (IBC, EQ. 2) GOTO 60
* MODIFY TF VARIABLE FOR CONTINGENCY CASES
    IBC=2
   DO 54 I=1.NB
 IF (IDBT (1) . NE. 1) GOTO 54
   S= (0.,0.)
  DO 55 J=1.NL
  IF (IDL (J) . NE. 2) GOTO 55
 1F(NMF(J), EQ. IB(I)) GOTO 63
   IF (NMT (J) . NE . IB (I)) GOTO 55
   K=IC(NMF(J)) ; GOTO 64
 63 K=IC(NMT(J))
 64 S=S+V(I) *CONJG((V(I) -V(K))/ZL(J))
55 CONTINUE
   TF(I) = TF(I) - S
   A(I) = A(I) + CONJG(S/V(I))
54 CONTINUE
* ADD EQUIVALENT CIRCUITS TO ORIGINAL 7BUS
   DO 56 I=1,NL
   IF (IDL (I) . NE . 2) GOTO 56
   NF=NMF(I)
   NT=NMT(I)
   DO 61 J=1.NB
 61 ZA(J) = ZB(J,NT) - ZB(J,NF)
   ZD=ZL(I)+ZA(NT)-ZA(NF)
   ZD=1./ZD
   DO 59 J=1.NB
   00 59 K=J.NB
   ZB(J,K)=ZB(J,K)-ZD*ZA(J)*ZA(K)
59 ZB (K, J) = ZB (J, K)
56 CONTINUE
* PRINT LISTING OF DECISIONS AVAILABLE
   PRINT 1
   PRINT, "LIST OF COMMANDS:"
   PRINT," 1 = END OF JOB"
   PPINT," 2 = CONTINGENCY"
   PRINT." 3 = CKT SUMMARY"
   PRINT," 4 = FULL REPORT
   PRINT," 5 = RUN ZIPFLOW"
```

```
PRINT . " 6 = ADJUST GENR"
    PRINT," 7 = RESTORE CKT"
    PRINT, " 8 = CHANGE TAPS"
    PRINT," 9 = LOSS ASSIGN"
* DECIDE WHAT STEP IS TO BE PERFORMED NEXT
60 PRINT 1
    PRINT, "COMMAND NUMBER " READ, IBR
    IF (IBR.LT.1.OR.IBR.GT.9) GOTO 60
    GOTO (69,70,71,72,48,107,109,133,207). IBR
69 PRINT . "END OF JOB"; CALL EXIT
* PREPARE AND EXECUTE CONTINGENCY
70 PRINT, "REMOVE CIRCUIT "; READ 3.NM
    DO 62 I=1.NL
    IF (IDL (I) . EQ . 9) GOTO 62
    IF (NML (I) . NE . NM) GOTO 62
    M=I ; GOTO 53
 62 CONTINUE
    PRINT."CIRCUIT NOT FOUND"; GOTO 60
* MODIFY ZBUS BY REMOVING REQUESTED CIRCUIT
53 DO 66 J=1.NB
 66 ZA(J)=ZB(J,NMT(M))-ZB(J,NMF(M))
    ZD=ZA(NMT(M))-ZA(NMF(M))-ZL(M)
    IF (CABS(ZD)/CABS(ZL(M)).GT..OO00001) GOTO 52
    PRINT."ILLEGAL CIRCUIT REMOVAL"; GOTO 60
 52 IDL(M)=9; ZD=1./ZD
    DO 58 J=1,NB
    DO 58 K=J, NB
    28 (J,K)=ZB(J,K)-ZD*ZA(J)*ZA(K)
 58 ZB(K,J)=ZB(J,K)
    GOTO 73
* PRINT CIRCUIT SUMMARY OUTPUT
 71 PRINT . "PERCENT LIMIT
                           " READ . PCL
    PRINT," CKT PCT"
    DO 74 I=1.NL
    IF (IDL (I) .EQ. 2. OR. IDL (I) .EQ. 9) GOTO 74
    IF (JDL (I)/10.EQ.NMF(I)) GOTO 123
    J=IC(NMT(I)) ; K=IC(NMF(I))
    GOTO 124
 123 J=IC(NMF(I)); K=IC(NMT(I))
 124 S= (V(J) *TAP(I) -V(K))/ZL(I)
    IF (TAP(I).GT.1.) S=S*TAP(I)
    PCT=100. *CABS(S)/RAT(I)
    IF (PCL.GT.PCT) GOTO 74
    PRINT 75.NML(I).PCT
 75 FORMAT (2X, A4, F4.0)
 74 CONTINUE
    GOTO 60
* PRINT DETAILED OUTPUT REPORT OF BUS AND CIRCUIT VALUES
 72 PRINT, "X-----BUS DATA----X----LINE FLOWS----
   + ----X11
                                      TO CKT
                                                       MVAR
    PRINT . " FROM
   + PCT AUTON
```

```
* ARRANGE BUS NAMES IN ALPHABETICAL ORDER
    NM1=0
    DO 76 LN=1.NB
     NM2=31000000000
    DO 136 II=1,NB
    IF (NMB(II) . LE. NMI) GOTO 136
     IF (NM2.LT.NMB(II)) GOTO 136
     I=II ; NM2=NMB(I)
 136 CONTINUE
    (I) BMM=[MM
    VB=CABS(V(I)) : N=0
    ANG=AIMAG(V(I))/REAL(V(I))
    ANG=57.29578*ATAN (ANG)
    S=TF(I)
    IF (IDBT(I) .NE.1) GOTO 77
* SUM UP NET INTERCHANGE
    DO 78 J=1.NL
    IF (IDL (J) . NE. 2) GOTO 78
    IF (NMF (J) . EQ . IB (I)) GOTO 79
    IF (NMT (J) . NE. IB (I)) GOTO 78
    K=IC(NMF(J)); GOTO 80
 79 K=IC(NMT(J))
80 S=S+V(I)*CONJG((V(I)-V(K))/ZL(J))
 78 CONTINUE
 77 CONTINUE
 81 00 82 J=1.NL
    DATA=
    IF (IDL (J) . EQ . 2. OR . IDL (J) . EQ . 9) GOTO 82
    IF (NMF (J) . EQ. IB(I)) GOTO 83
    IF (NMT (J) . NE . IB (I)) GOTO 82
    K=IC(NMF(J)) ; GOTO 84
83 K=IC(NMT(J))
84 IF (IC (JUL (J) /10) . EQ. I) GOTO 125
    ZD=(V(I)-V(K)*TAP(J))/ZL(J)
    GOTO 126
125 ZD=TAP(J)*(V(I)*TAP(J)-V(K))/ZL(J)
    T1=1./TAP(J) ; IF(T1.EQ.1.) GOTO 126
    ENCODE (NCR. 127) TI
127 FORMAT (F6.3)
    DECODE (NCR, 128) DATA
128 FORMAT (A6)
126 LF=V(I) *CONJG(ZD)
    PCT=100. *CABS(ZD)/RAT(J)
    IF (N.EQ.1) PRINT 85, NMB(I) . VB. ANG, NMB(K) . NML(J) . LF. PCT. DATA
    IF (N.EQ.2) PRINT 86.G(I), NMb(K).NML(J).LF, PCT.DATA
    IF (N.EQ.3) PRINT 87, LD(I), NMB(K), NML(J), LF, PCT. DATA
   IF (N.EQ.4. AND. S.NE. (0.,0.)) PPINT 88, S. NMB(K) . NML(J) . LF. PCT
   + .DATA
    IF (N.EQ.4.AND.S.EQ.(0.,0.)) PRINT 89, NMB(K), NML(J).LF.PCT
   + ,DATA
    IF (N.GT.4) PRINT 89, NMB(K), NML(J), LF, PCT. DATA
82 CONTINUE
```

```
96 N=N+1
    IF (N.GT.4) GOTO 76
    GOTO (76,93,94,95),N
93 PRINT 90,G(I) : GOTO 96
94 PRINT 91.LD(I) ; GOTO 96
95 IF (S.NE. (0.,0.)) PRINT 92.5
76 CONTINUE
85 FORMAT (/2X, A4." VOLT", F6.3, F6.1, 3X, A4, 1X, A4.2F6.0, F4.0, A6)
86 FORMAT (7X," GEN". 2F6.0.3X.A4.1X.A4.2F6.0.F4.0.A6)
87 FORMAT (7X, "LOAD", 2F6.0.3X, A4, 1X, A4, 2F6.0.F4.0.A6)
88 FORMAT (7X." TIE", 2F6.0.3X, A4.1X. A4.2F6.0.F4.0, A6)
89 FORMAT (26X, A4, 1X, A4, 2F6, 0, F4, 0, A6)
90 FORMAT (7X." GEN", 2F6.0)
91 FORMAT (7X, "LOAD", 2F6.0)
92 FORMAT (7X," TIE". 2F6.0)
    GOTO 60
* BEGIN EXECUTION OF THE ZIPFLOW ROUTINE
48 DO 98 I=1.NL
   IF (IUL(I).GE.2) GO TO 98
  NF=NMF(I)
  NT=NMT(I)
  DO 99 J=1.N8
99 VO(IC(J))=ZB(J,NF)-ZB(J,NT)
   ZD=1./ZL(1)
   NF=IC(NF); NT=IC(NT)
  LF=CMPLX(1..0.)-(VO(NF)-VO(NT))*ZD
   SEP=CABS(LF)
   IF (SEP. GT. . 001) GO TO 100
   PRINT 101. NML(I)
 101 FORMAT("OOPEN CKT ".A4." - SYSTEM SEPARATION")
   GO TO 98
 100 IF (IC (JDL (I) /10) . EQ. NF) GOTO 129
     S=(V(NF)-V(NT) *TAP(I)) *ZD/LF
     GOTO 130
 129 S=(V(NF) *TAP(I) -V(NT)) *ZD/LF
 130 IF (TAP(I).GT.1.) S=S*TAP(I)
   DO 102 J=1.NB
 102 VO(J)=VO(J) #5
   K=C
   DO 103 J=1.NL
   NF=IC(NMF(J))
   NT=IC(NMT(J))
   IF (J.EQ.I) GO TO 103
  IF (IDL (J) . GE. 2) GO TO 103
   PCT=0.
   IF (RAT(J).GT.O.) PCT=100./RAT(J)
     IF (IC (JDL (I) /10) . EQ. NF) GOTO 131
     S=V(NF)+VO(NF)-TAP(J) *V(NT)-VO(NT)
     GOTO 132
 131 S=TAP(J) *V(NF)+VO(NF)-V(NT)-VO(NT)
 132 IF (TAP(J) .GT.1.) S=S#TAP(J)
     PCT=CABS(S/ZL(J))*PCT
```

```
IF (PCT, LT. 90.) GO TO 103
   IF (K.EQ.O) PRINT 104.NML(I)
 104 FORMAT ("OOPEN CKT ", A4," - OVERLOAD CKTS")
   PRINT 105.NML (J), PCT
 105 FORMAT (1X. A4, F6.0." PERCENT")
 103 CONTINUE
    IF (K.EQ.O) PRINT 106.NML(I)
 106 FORMAT ("OOPEN CKT ", A4." - NO PROBLEMS")
 98 CONTINUE
   GO TO 60
* ADJUST INTERNAL GENERATION WHILE HOLDING NET TIE FLOW CONSTANT
 107 DO 108 I=1,NB
    IF (IDBG(I) . NE. 1) GOTO 108
    PRINT 20, NMB(I)
    READ, G(I)
 108 CONTINUE
    GOTO 73
* RESTORE FULL TRANSMISSION 7BUS
 109 DO 120 LN=1.NL
     IF (IDL (LN) . NE. 9) GOTO 120
    DO 117 KZ=1,NB
 117 ZA(KZ) = ZB(KZ, NMT(LN)) - ZB(KZ, NMF(LN))
    ZD=ZA(NMT(LN))-ZA(NMF(LN))+ZL(LN)
    ZD=1./ZD
    00 119 J=1.NB
    00 119 K=J.NB
    ZB(J,K)=ZB(J,K)-ZD*ZA(J)*ZA(K)
 119 ZB(K.J)=ZB(J.K)
    IDL (LN) = JDL (LN) - JDL (LN) / 10 * 10
 120 CONTINUE
    GOTO 73
* CHANGE TAP SETTINGS FOR AUTOS
 133 DO 135 I=1,NL
    IF (IDL (I) . NE . 1) GOTO 135
   PRINT 134, NML(I)
 134 FORMAT (1H+, "TAP FOR ", A4)
   PEAD.T1
   TAP(I)=1./T1
 135 CONTINUE
   GOTO 73
* BEGIN EXECUTION OF THE LOSSES ALGORITHEM
207 NF1=NB+1
* IDENTIFY THE REFERENCE BUS IRB
    IRB=IC(1)
* STORE W IN THE 1ST REC AND ZB IN THE 2ND REC
   WRITE ("WSAVE") ((78(I,J).I=1.NB),J=1.NB)
   WRITE ("WSAVE") ((ZB(I.J), I=1.NB), J=1, NB)
  REWINDHWSAVE
```

```
* STORE HASE CASE VOLTAGES IN VO
    DO 208 I=1.NB
    VO(I)=V(I)
* CLEAR THE W MATRIX
 . 0= (L, I) W 80S
    DO 209 L=1.NL
* CONVERT INTERNAL FROM AND TO BUS NUMBERS TO ORIGINAL NUMBERS
* APPEARING IN ORDER OF INPUT DATA
    NF=IC(NMF(L))
    NT=IC(NMT(L))
* RESTORE URIGINAL FROM-TO ORDER IF REVERSED
    IF (IC (JDL (L) /10) . EQ. NF) GOTO 236
    NF=IC(NMT(L))
    NT=IC(NMF(L))
* CALCULATE THE BASE CASE FROM AND TO POWERS FOR EACH CIRCUIT
 236 PF(L)=VO(NF)*CONJG((VO(NF)*TAP(L)-VO(NT))/ZL(L))*TAP(L)
    P2(L)=VO(NT) *CONJG((VO(NT)-VO(NF))/ZL(L))
* ASSUME A LOSSLESS AUTOTRANSFORMER MODEL
    IF (IDL (L) . EQ . 1) P2(L) =-PF(L)
    ZD=PF(L)/(VO(NF)-VO(NT))
* INSERT TERMS INTO THE W MATRIX
    W(NF,NT)=W(NF,NT)-ZD
    W(NF.NF)=W(NF.NF)+ZD
    IF (IDL (L) . NE . 1) ZD=P2(L)/(VO(NT)-VO(NF))
    W(NT.NF)=W(NT.NF)-ZD
    W(NT,NT)=W(NT,NT)+ZD
 209 CONTINUE
* SHORT THE REG BUS TO GND
    W(IRB, IRB) = W(IRB, IRB) +1.E5
* STORE W FOR FUTURE ITERATIONS DURING CONVERGENCE
    WRITE ("WSAVE") ((W(I.J), I=1, NB), J=1, NB)
 235 PRINT 245
 245 FORMAT ("IGENERATOR NAME
    READ 3.LGM
    J=0
    IF (LGM. EQ. IALL) GOTO 211
    IF (LGM. NE. IS) GOTO 237
* RESTORE ORIG ZB AND BASE V AND RETURN TO PROG CONTROL
    DO 234 I=1.NB
 234 V(I)=VO(I)
    HEAD ("WSAVE") ((ZB(I,J), I=1,NB), J=1,NB)
    REWINDHWSAVEH
    GOTO 60
 237 DO 210 I=1.NB
    J=I
    IF (LGM.EO.NMB(I)) GOTO 211
 210 CONTINUE
    PRINT, "CANNOT FIND THAT GENERATOR"
    GOTO 235
 211 LGM=J
```

```
REWINDHWSAVEH
    PLOLD=0.
 212 PLOSS=0.
* BUILD TRANSACTION POWER VECTOR
* ONLY TRANSACTIONS OF POWER FROM GENERATORS TO LOAD IS MODELED
    DO 213 I=1.NB
    IF (LGM.EQ.0) P(I) = -PL(I) + REAL(G(I))
    IF (LGM.EQ.0) GOTO 213
    P(I) =-PL(I) * (REAL (G(LGM)) -PLOLD) /SYSL
 213 CONTINUE
    IF (LGM.GT.O) P(LGM) = P(LGM) + G(LGM)
    DO 214 I=1.NB
 214 W(I.NB1)=P(I)
* SOLVE W USING THE GAUSS-JORDAN TECHNIQUE
    DO 218 K=1.NB
    ZU=W(K.K)
    DO 216 J=K.NB1
 216 W(K,J)=W(K,J)/ZD
    DO 218 I=1,NB
    IF (I.EQ.K) GOTO 218
    S=W(I.K)
    DO 217 J=1.NB1
 217 W(I,J)=W(I,J)-W(K,J) #5
 218 CONTINUE
    DO 220 I=1.NB
 220 V(I)=W(I,NB1)+VO(IRB)
* CALCULATE THE PROJECTION OF CURRENT ON THE BASE CASE CURRENT
* FOR EACH CIRCUIT
    DO 221 L=1.NL
    NF=IC(NMF(L))
    NT=IC(NMT(L))
    IF (IC (JDL (L)/10) . EQ. NF) GOTO 238
    NF=IC(NMT(L))
    NT=IC(NMF(L))
 238 FACT=(V(NF)-V(NT))/(VO(NF)-VO(NT))
    PLOSS=PLOSS+FACT*(PF(L)+P2(L))
    P(NF)=P(NF)-FACT*PF(L)
 221 P(NT) = P(NT) - FACT * P2(L)
    ERR=PLOSS-PLOLD
    PRINT. "SYS MW MISMATCH AND MW LOSS". ERR. PLOSS
    PLOLD=PLOSS
* RESTORE ORIGINAL W FOR NEXT ITERATION
    READ ("WSAVE") ((W(I,J), I=1,NB), J=1,NB)
    REWIND "WSAVE"
    IF (ABS (ERR) . GE . . 001) GOTO 212
    PRINT . "
    PRINT, "MISMATCH AT EACH BUS"
    DO 222 I=1.NB
222 PRINT 223, NMB(I), P(I)
223 FORMAT (1X. A4. F10.4)
```

```
PRINT, " "
   PRINT, "CIRCUIT FLOWS AND LOSSES"
   DO 232 L=1.NL
   NF=IC(NMF(L))
   NT=IC(NMT(L))
   IF (IC (JDL (L) /10) . EQ. NF) GOTO 239
   NF=IC(NMT(L))
   NT=IC(NMF(L))
239 FACT=(V(NF)-V(NT))/(VO(NF)-VO(NT))
   FLO1=PF(L) *FACT
   FLO2=P2(L) *FACT
   PLOSS=FL01+FL02
232 PRINT 233.NML(L), NMB(NF), NMB(NT), FLO1.FLO2.PLOSS
233 FORMAT (3(1X, A4), 3F10.4)
   PRINT," "
   GOTO 235
   END
```

```
PRINT," "
   PRINT, "CIRCUIT FLOWS AND LOSSES"
   DO 232 L=1.NL
   NF=IC(NMF(L))
   NT=IC(NMT(L))
   IF (IC (JDL (L) /10) . EQ. NF) GOTO 239
   NF=IC(NMT(L))
   NT=IC(NMF(L))
239 FACT=(V(NF)-V(NT))/(VO(NF)-VO(NT))
   FLO1=PF(L) *FACT
   FLO2=P2(L) *FACT
   PLOSS=FL01+FL02
232 PRINT 233.NML(L), NMB(NF), NMB(NT), FLO1.FLO2.PLOSS
233 FORMAT (3(1X, A4), 3F10.4)
   PRINT," "
   GOTO 235
   END
```

Appendix E

Wheeling Power Task Force Letters

Bibliography

- 1. Symposium on Scheduling and Billing of Bulk Power Transfers. Proceedings of the American Power Conference. Vol. 34. Chicago, Ill., 1972, pp. 904-967.
- 2. Happ, H. H., and Nour, N. E. "Multi-Area Network Modeling for Power Pools." <u>IEEE Transactions on Power Apparatus and Systems</u>. Vol. PAS-95. March-April, 1976, pp. 586-594.
- 3. Jeffs, Eric. "HVDC Carries America's Coal Energy Eastward." Energy International. Vol. 14. January, 1977, pp. 15-18.
- 4. "Computer Control Eases U. S. Power Supply Problems."

 <u>Electrical Review</u>. Vol. 201. September-October,
 1977, pp. 25-27.
- 5. Wheeling Power Task Force of the Texas Interconnected System Planning Subcommittee. A Collection of Letters on Wheeling Power and Losses, 1978. (Included in Appendix.)
- 6. Adamson, A. M.; Desell, A. L.; Kenney, J. F.; and Garver, L. L. "Inclusion of Inter-Area Transmission in Production Costing Simulation."

 Vol. PAS-97. September-October, 1978, pp. 1481-1488.
- 7. Favero, Philip. "Michigan Pool Brings Savings to Municipals and Co-ops." Public Power. Vol. 36. September-October, 1978, pp. 39-40.
- 8. Sebesta, Donald. "Pool Implements New Tie Models."

 Electrical World. December 1, 1978, pp. 54-55.
- 9. Podmore, R.; Ross, D.; Gibbard, M.; Anderson, K.; Page, R.; Argo, K.; and Coons, K. "Automatic Generation Control of Jointly-Owned Generating Units." IEEE Transactions on Power Apparatus and Systems. Vol. PAS-98. January-February, 1979, pp. 207-218.
- 10. Falcone, Charles A. "A National Power Grid: Some Considerations." Public Utilities Fortnightly. April 12, 1979, pp. 27-31.

Vita

Eugene Gordon Preston was born in Dallas, Texas, on August 25, 1947, the son of Helen Gordon Preston and Robert Eugene Preston. After graduating from Hooks High School in 1965, he entered the University of Texas at Arlington. He received the degree of Bachelor of Science in Electrical Engineering in May, 1970. He has since been employed by the City of Austin Electric Department. In 1974 he obtained a Professional Engineer's Certificate in the State of Texas. In 1974 he entered the Graduate School of The University of Texas at Austin.

Permanent address: 4710 Fawn Run Austin, Texas 78735

This thesis was typed by Eugene G. Preston