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Abstract— This paper presents a study case of the impact of Variable 

Energy Resources (VERs) on the Reserve Margin of the ERCOT 

region.  Wind and solar are projected to provide a large contribution in 

generation capacity for the North American Bulk Power System 

(BPS). The increasing penetration of VERs makes it important to 

define “best practices” for quantifying the contribution of these 

energy-limited resources when evaluating resource adequacy. 

Calculating the capacity values of VERs can be challenging because 

they interact with each other in a nonlinear and dependent manner. The 

approach taken in this paper is part of a larger effort that the North 

American Electric Reliability Corporation (NERC) is taking to ensure 

reliable operation of the North American BPS. A loss of load 

probability model is used to determine VER capacity contributions.  

Over or under assigning the VER percentage capacity credits is shown 

to affect the reserve margin (RM) percentage needed to maintain the 

same level of reliability.  The authors recommend a method for 

maintaining RM consistency. 

Index Terms— Capacity Factor, Monte-Carlo, Variable Energy 

Resources, VER, Wind, Solar, COPT, IEEE RTS, LOLP, LOLE, 

LOLEV, Probability Distributions, Reserve Margin, Risk Assessment, 

Resource Adequacy, ERCOT, CAISO, WECC, NERC 

I. INTRODUCTION 

 The North American Electric Reliability Corporation 
(NERC) is responsible for ensuring the reliability of the bulk 
power system in North America [1]. Anticipating the growth of 
VERs; NERC’s effort is to ensure that the industry will have 
enough dependable capacity to meet future resource adequacy 
requirements.  Not having enough planned capacity could lead 
to a higher Loss of Load Probability (LOLP) reliability measure.  
The LOLE is defined as the expected number of days per year 
for which the available generation capacity is insufficient to 
serve the daily peak demand.  This is the original classic metric 
that is calculated using the peak load of the day (or the daily peak 
variation curve) and the amount of installed conventional 
generation capacity. The LOLP each day is a simple “lookup” 
from a Capacity Outage Probability Table (COPT). LOLP is 
calculated by convolving the capacities and forced outage rates 
of the generation fleet together. This results in the COPT which 
shows alternative levels of capacity along with their associated 
probabilities. A minimum LOLE of one day in ten years has 
been a widely used measure for many years.  This historical 

measure is not an operating reserve but is simply a static measure 
of whether there is sufficient planned generation capacity.  
Addition of VERs complicates the LOLE calculation process.  

 VERs could be treated as generation or as passive load 
modifiers.  In this study we treat VERs in an hourly sequential 
model as negative load to avoid the complexities of having to 
create VER equivalent generator models.  The distribution of 
hourly net demand (demand minus VER) for forward looking 
risk calculations is the distribution of historic observations with 
time synchronization maintained and demand and individual 
VERs scaled to a future study year.  The maximum daily LOLP 
with VERs occurs at the hour of greatest net peak demand after 
the hourly VER MWs have been subtracted from the hourly 
demands for a historical period of data spanning 2010-2015 
scaled to a future test year.  The traditional definition of the 
LOLE calculated at the peak demand hour is modified to be 
calculated at the hour of the maximum net peak demand each 
day.  The LOLE=0.1 days/year is still valid. 

 Systems like the Electric Reliability Council of Texas 
(ERCOT) uses a sequential Monte Carlo program to calculate 
the LOLEV, loss of load events per year [2,3].  LOLEV is 
defined as the number of events in which some system load is 
not served in a given year. A LOLEV can last for one hour or 
for several continuous hours and can involve the loss of one or 
several hundred megawatts of load. This is numerically the same 
as the loss of load frequency (LOLF). A minimum LOLE of one 
day in ten years has been a widely used measure for many years.  
This means, that on average, there is a probability of loss of load 
once every ten years [4]. 

 In Systems like ERCOT with a sharp summertime daily peak 
demand, loss of load events occur once per day.  Numerically 
this leads LOLE to equal LOLEV. Other systems such as the 
California Independent System Operator (CAISO) has solar 
power that produces a demand dip in the middle of the day [5].  
This results in the LOLEV being greater than the LOLE.  
LOLEV is a newer measure than LOLE. Other measures under 
consideration for adequacy testing are the LOLH (Loss of Load 
hours) per year, and the EUE, which is the Expected Unserved 
Energy. This paper uses the original LOLE measure of 0.1 days 
per year. 
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 This paper discusses the ongoing evaluation of the potential 

impacts of new VERs on the grid. Section II presents exact 

calculations of reliability indices using recursive convolution 

method. Section III compares frequency and duration Monte 

Carlo (fdMC) sequential with a sequential hourly model that was 

used in ‘exact’ IEEE RTS reliability indices.  Use of a COPT as 

was used in the RTS has been found to be in good agreement 

with fdMC LOLE day/year for test cases that do not include 

VERs.  VER generator models are avoided in [6,7] and in our 

study by treating VERs as negative demand.  Section IV 

discusses simulation results and section V concludes the paper 

and provides recommendations.  

II. THE IEEE RTS EXACT CALCULATOR 

 Allan and Billington provide an important benchmark set of 
“exact” calculations for reliability indices for a Reliability Test 
System proposed in [8] known as the IEEE 24 bus RTS [9], [11].  
Hourly LOLP = F(D) where F is the cumulative distribution of 
independent generators and D is hourly demand. 

 In this paper an in-house “RTS” program was written to 
duplicate the indices presented in [8].  Though the authors in [8] 
did not show their mathematical formulation, the recursive 
convolution in equation (1) below will reproduce the “exact” 
reliability indices that were given in [8].  

[F(x)+ =  (1FORk)F(x)+ FORkF(xCk) ]  x = 0, xmax     (1) 

Where F(x) is the COPT prior to adding generator k and F(x)+ 

is after generator k is added.  FORk is generator k’s forced 

outage rate.  Ck is the generator k MW capacity and F(x-Ck) 

represents the COPT shifted to the right by Ck MW. Initially all 

F(x>0)=0 and F(x=0)=1. To maintain exactness in the 

calculations and to agree with the reference [8], the generator 

capacities are integers and the x MW steps are also integers.  

F(x)+ is the updated table after generator k is convolved using 

(1).  The F(x) table expands to larger and larger xmax as more 

and more generators are added to F(x).  In the computer 

program x is stepped from xmax to 0. 

 

 

Fig. 1  RTS Program Capacity Outage Probability Table 

 The above figure shows how equation (1) COPT with 1 MW 
steps is to be used if x is not an integer since it’s likely the 
demand is not an integer.  In order to get an “exact” indices 
agreement with reference [8] the real value x is set to an integer 
x MW and then used in the COPT “lookup” table. 

 Maintenance is not included in this study because the 
objective is to review installed generation capacity.  If there is a 
maintenance reason capacity might not be available at peak load 
times, the forced outage rate (FOR) could be increased. 

 A Monte Carlo (MC) iterative procedure can be used to 
generate the COPT for the same set of generators.  However, a 
high degree of accuracy in MC will require much more computer 
time than the ‘exact’ COPT used here. 

III. MODELING SEQUENTIAL EVENTS USING A COPT 

A frequency and duration Monte Carlo (fdMC) model 
captures time dependent events such as energy constraints, 
weather related events, transmission constraints, and other 
nonlinear events.  In an operating environment, the commitment 
and dispatch of generators is tightly coupled with what is 
happening before and after the hour being simulated.  For 
example, the dispatch of hydro plants in the Pacific Northwest 
requires a complex sequential simulation model [12]. 

 In reference [13], Garver linked ‘sequential’ to fdMC and 
‘analytical’ to the use of load duration curves (LDC).  The author 
correctly stated fdMC captured the loss of load frequency of 
events whereas the LDC analytical methods did not.  Since 
authors of [8] on RTS did not describe the solution technique 
used to calculate the ‘exact’ indices, the solution could have 
been an analytical method that loses the sequential information. 

 The RTS program used in this study is a hybrid sequential 
analytical method that calculates an ‘exact’ LOLE in agreement 
with fdMC LOLE day/year for any sized system with simple 
RTS type data, [14,15].  The reason it maintains LOLP exactness 
for large systems is because earlier rounding errors are scaled 
down with each new generator added to the table. 

 A fdMC sequential model and the COPT sequential model 
used in this study have been tested and LOLE values are in 
agreement.  They agree because both models use the same 
sequential hourly demands when there are no VERs in either 
model.  The non VER generators have independent outages in 
both fdMC and in the COPT so we would expect the hourly 
LOLPs to be the same after there are sufficient iterations in the 
fdMC.    The generator state transitions in fdMC are independent 
of each other and the demand.    Therefore, the COPT hourly 
LOLPs are essentially the same as  the fdMC  LOLPs each hour.  
The fdMC counts of days per year ‘events’ divided by number 
of years iterated is consistent with the COPT as long as the 
generators are independent.  A simple system has been tested 
using fdMC for a million iterations and it provides the same 
LOLE as the COPT [16]. 

 Because some days have double peaks in the RTS, the RTS 
computer program tests for separate LOLP peaks in the AM and 
PM.  These are essentially the LOLE for 12 hour periods.  The 
12 hour AM/PM LOLEs are reported separately to see how 
much loss of load is occurring in the AM and PM.  These 12 
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hour LOLEs are summed to produce an approximate LOLEV.  
Other researchers should simulate the RTS using fdMC and 
report their findings for the LOLE, the 12 hour LOLEs, and the 
LOLEV. 

 A simple approach is used to capture the complex timing 
relationships between VERs and loads.  Several past years of 
hourly VERs and load MWs are scaled to a future test year.  This 
allows a complex fdMC model to be replaced with a simple 
already historically optimized set of hourly hydro dispatch 
MWs. 

 ERCOT has adopted a procedure that finds average wind 
during peak demand hours [17].  The averaging results in an 
improvement in the reliability.  This is because the wind 
distribution within those few peak demand hours is no captured.  
There can be a few hours of near zero wind output within those 
hours causing significantly high LOLPs for those hours.  If an 
fdMC simulation is observed to produce better LOLE results 
than the ‘exact’ RTS COPT, then the difference is probably due 
to VER modeling assumptions, and not to differences in fdMC 
sequential versus COPT sequential models.  

A. Hourly Demand and Generator Data 

 Two types of ERCOT data are needed to run the RTS 
program, generator data by individual unit, and historical hourly 
wind, solar, and demand data.  The ERCOT capability-demand-
reserve (CDR) has the future demand forecast and all the 
generators that go into the generator data file, [18].  The 
historical hourly loads and historical wind MW are available on 
ERCOT reports [19].  Solar data is posted on line at several 
websites [20,21]. 

IV. SIMULATION RESULTS 

 Five years of historical VER and demand data from 2010 to 
2015 has been used.  The modeling of several historical years 
allows us to see the variations in year to year of the reliability 
indices.  The ERCOT GW wind and solar capacity increases are 
observed to increase the deviation from 0.1 days/year in the 
historical 2010 to 2015 period as shown in Figure 2. 

 

Fig. 2 Historical LOLE Deviation Increases with VER 

 The 0 GW case is run with 2016 data and no VERs.  LOLE 
deviation is 40% due only to the 2010-2015 hourly load profiles.  
The historical profiles are normalized so each historical year has 
a one per unit peak demand.  Then hourly MW loads are 
calculated by multiplying the future peak demand forecast times 

the per unit demand every hour.  17 GW of VER is added in 
2016 to create an intermediate point in Fig 2.  The right hand 
point at 29 GW VER in 2026 shows a larger deviation.  
Projecting to 30 GW of VER, the LOLE deviation is double the 
no VER case.  VERs increase risk even when the LOLE=0.1 
day/year is held constant. 

 

          Fig. 3 Historical Years Ratio LOLH/LOLE 

 The LOLH is the sum of all hours’ LOLPs.  LOLE is the sum 
of daily peak LOLPs.  An LOLE of 0.1 days/year is about the 
same level of reliability in ERCOT as 0.25 hours/year LOLH. 
As shown in Figure 3, the ratio of LOLH to LOLE provides, on 
average, loss of load hours/day measure. A 2.5 LOLH to LOLE 
ratio means that there is a 2.5 of loss of load hours per day, a 
measure that is insightful for understanding daily generation and 
load activities and how long the duration of generation outages 
could be.  

 With a changing generation mix, the traditional use of a 
Reserve Margin (RM) analysis in the US continues to be used 
for assessing resource adequacy.  Reserve Margins measure the 
amount of generation capacity available to meet expected 
demand during the planning horizon and have been a surrogate 
metric for examining and planning for resource adequacy and 
system reliability. Based on the premise of this metric, a system 
should be able to supply resources to meet the projected normal 
weather electricity demand (given an explicit amount of reserve 
capacity) with a high degree of certainty that the system can 
manage generator outages and modest deviations from the 
annual demand forecast.   

 The RM calculation gives VERs some capacity credit.  In the 
case of ERCOT, VER capacity contributions are estimated by 
averaging the VER MWs during the 20 peak demand hours of 
several past years [22].  In the ERCOT system, the 2016 capacity 
contributions are 12% for 14,727 MW noncoastal wind, 55% for 
2,001 MW coastal wind, and 80% for 455 MW solar installed 
capacities. The 2026 VER capacities are estimated to be 23840, 
2971, and 2053 MW respectively.  The 2016 RM is 14.5 percent 
and the 2026 RM equals 14 percent.   

 Assuming a 3 percent LFU and a seven step approximation 
to the normal distribution [10], the calculated 2016 and 2026 
LOLEs are 0.11 days/year and 0.30 day/year, respectively.  
Notice the LOLE has increased although the RM is nearly the 
same.  This is because the capacity contributions are a bit too 
high.  Capacity contributions from an effective load carrying 
capability (ELCC) analysis are a bit low.   

 Figure 4 shows that ERCOT would need to raise the RM to 
16% in 2026 to maintain an LOLE=0.1 days/year for a no VER 
case of 13.8 percent RM. The RM increase in Figure 4 is needed 
to maintain a constant level of reliability because the VERs are 
being over rated.   
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 The RM percentage dependents on the VERs capacity 
values. to maintain a certain level of reliability.  The VERs are 
observed to interact with each other and in the case of solar, a 
point is reached in which the addition of more solar has no more 
capacity credit value for lowering the LOLE.  This happens 
when the daily net peak demand peaks before sunup or after 
sundown; the times when solar produces no power. 

 

Fig. 4 Solar Shifts the Net Peak Demand to Sundown 

 Figure 4 shows solar scaled 15 times higher on a June peak 
day than the CDR forecast to illustrate how the net peak demand 
is shifted from about 4 to 5 PM to about 8 PM.  Adding more 
solar will not change the net peak demand unless the solar can 
generate after sundown (i.e. has storage).  If an ELCC 
calculation is performed on the case with 30 GW solar in 
ERCOT, the incremental capacity value is nearly 0%.  

 The capacity value of VER diminishes as more VER is 
added as shown in Figure 5.  System reliability is overstated in 
the CDR if adjustments in the VER capacity contributions are 
not made.  Appropriate capacity contributions can be obtained 
by iteratively testing various combinations of VER capacity 
contributions and VER capacities and observing how the LOLE 
and RM is affected. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 ERCOT VER RM at Different Capacity Contributions. 

 The 2016 factors of 12%, 55%, and 80% that ERCOT is 
currently using could be lowered to 10%, 40%, and 70% to give 
a better match with holding the LOLE constant.  By 2026 the 
additional VER capacity is less effective and the reliability 
findings in this paper indicate a better set of capacity 

contributions would be 9%, 36%, and 68% for noncoastal wind, 
coastal wind, and solar. 

V. CONCLUSIONS AND RECOMMENDATIONS 

 Variable Energy Resources are anticipated to increase 
substantially in the North American BPS. The importance of 
maintaining an adequate level of reliability therefore, becomes 
crucial. This paper addresses the importance of VERs modeling 
to BPS and distinctly showing the relationship between the 
assignment of different capacity credits for VERS such as wind 
and solar and the necessary adjustments in the reserve margin to 
maintain a constant level of reliability.  This was done by 
applying a sequential hybrid direct calculation COPT rather than 
the use of load duration curves.  The method has been chosen to 
model VERs in such a manner as to eliminate assumption errors.   

  It will be critical to provide ongoing reliability evaluation of 
the potential impacts of new VERs on the grid. Because 
prospective variable generation plants, by definition, do not 
already exist, obtaining data that can describe the likely behavior 
of future plants will be required for a number of reliability, 
adequacy, and integration tasks that are performed in the 
planning cycle.  Because weather is the principle driver for load 
and for VER output, it is very important to maintain chronology 
between variable generation and load.  Specific locations of 
future variable generation may not be known with certainty, and 
to evaluate the likely impacts multiple scenarios may need to be 
evaluated. Because of these issues, it will be necessary to 
develop and maintain public databases of wind, solar, and hydro 
historical production.  

 Calculating capacity value for existing variable energy 
resources requires chronological generation data that is 
synchronized with load data and other relevant system 
properties.  Existing power system data bases can be used to 
track this data, which would be useful in helping to better 
understand variable generation performance and operational 
issues. NERC already collects data to inform the GADS 
database [23].  Although it is more data intensive than the GADS 
process, operational data from variable generation over the next 
several years will be extremely valuable in the assessment of 
capacity value and operational issues surrounding the use of 
variable generation. In this paper, a computer program is used in 
the study of VER capacity contributions and is benchmarked 
against exact six digit reliability indices published in 1986 for 
the IEEE RTS for conventional generators.  Treating VER as 
hourly sequential data instead of as generators accurately 
captures the VER complex timing relationships with each other 
and with the hourly demand. 

 The running of a reliability analysis over a range of years is 
necessary in finding the load levels that can be served to meet a 
reliability measure such as an LOLE = 0.1 days/year, or some 
other measure.  Once the load levels are found, then 
approximation means can be used to estimate VER capacity 
contributions to hold reserve margins constant as VERs increase 
in capacity.   NERC and the Regions should continue facilitate 
the dissemination of information about how LOLP-related 
reliability and adequacy calculations perform and what they 
measure as more VERs are integrated into the system. 
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