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 Abstract - This paper presents a new method for calculating 

line currents for multiple line outages in large electric networks 

at extremely high computational speeds.  An example is given 

showing that only one minute of computation time is needed to 

test 160k N-3 line outage configurations for a large network. 

Resulting line overloads are shown to agree well with AC load 

flow.  The new method: 1) calculates line currents and powers 

for any set of multiple line outages; 2) tests for system separation 

due to lines outaged; 3) tests for electrical remoteness of lines 

being outaged, and 4) updates real power line distribution 

factors used in linear programming and probabilistic models. 

The method is restricted to passive networks in which tapped 

transformers are near unity. 

 

I.  INTRODUCTION 

 The reliability of an interconnected electric network is 

highly dependent on generation availability, transmission 

deliverability, and network loads.  The authors presented a 

composite generation-transmission model in [1] showing a 

direct method for calculating probabilistic line flow 

distributions for random generator outages in a large system. 

The line outage model presented here can be used as either a 

stand-alone method for deterministic line outage analysis or as 

a part of the generation outage probabilistic model in [1]. 

 This line outage model is computationally very fast.  Tests 

on a 4233 bus 5161 line network show that 99 lines can be 

tested for 160k different combinations of outages through N-3 

triple contingencies in about one minute of computation time 

on a 133 MHz Pentium computer.  A brute force approach of 

N-3 analysis is not feasible [2].  The total computational 

requirement is greatly reduced by discarding configurations 1) 

that cause islanding or system separation, 2) have too low a 

probability of occurrence, and 3) are too electrically isolated. 

The matrix equation (6) provides a convenient way to identify 

electrically isolated configurations and islanding.  Note that 

the treatment of islands is beyond the scope of this paper since 

generation and load within each separated area is usually not 

conserved.  Applying the isolated lines and separation tests to 

the example network reduces the number of statistically 

significant configurations from 160,000 to 1602.  The 1602 

cases are quickly calculated using the methods in this paper. 

 Computational speed is very high because the sparse nodal 

admittance matrix (1) is never modified for single outages. 

Multiple line outages are created as simple summations of 

single line outages that were calculated earlier in the process. 

 The speed gained from not modifying the matrix increases 

the solution error for tapped transformers.  Tests show this 

error is minor for voltage tapped transformers with taps in the 

.95 to 1.05 range and for phase shifting transformers with tap 

angles of a few degrees.  The error becomes progressively 

larger as taps differ from unity and zero degrees.  Full AC 

load flow solutions can be run to verify the accuracy of the 

fast solution results.  Matrix compensation [3] can be used to 

modify the admittance matrix to further reduce solution error. 

 The removal of a single line without matrix modification 

was introduced by Shoults in his ‘zip flow’ method [4] which 

is presented in section III.  This paper extends his theory to 

include multiple lines outaged (sections IV and V) by making 

linear combinations of the incremental line currents calculated 

in the single line outages.  Section VI has a simple model 

showing how tapped transformers introduce error.  Section 

VII presents a large system model showing the zip flow error 

compared to full AC load flow for N-3 lines outaged. 

 

II.  NOTATION 

∆Iij   complex current in line i for ±1 amp injection on line j 
Ibj  base case line j complex current to be interrupted 

[I]b   vector of n base case currents to be interrupted 

[∆I ] n⋅n matrix of line ∆I’s from [∆V ] i=1, n for n injections 

Hi,k  real p.u. line distribution for line i and generator k 

n  number of lines simultaneously outaged 

Sj  complex scalar line j injection current in p.u. amps 

[S]  vector of n complex injection currents in p.u. amps 

∆Vf j ‘from’ complex bus voltage for ±1 amp injection 

∆Vt j ‘to’     complex bus voltage for ±1 amp injection 

Vf bj  line j ‘from’ bus base case load flow voltage 
Vt bj  line j ‘to’ bus base case load flow voltage 

∆Vf ij   line i ‘from’ bus voltage for ±1 amp injection on line j 
∆Vt ij   line i   ‘to’   bus voltage for ±1 amp injection on line j 
Yj  complex in-line admittance of line j to be removed 

[Y ] complex admittance matrix of the total network 

[V ]b load flow base case bus voltages of the network 

[∆V ] j network bus voltages from ±1 amp injection on line j 

PE-018-PWRS-0-06-1998 
This is a reformatted version of this paper. 

An original can be obtained from the IEEE. 
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III.  SINGLE LINE OUTAGED 

 Single line removal can be performed using matrix 

compensation [3] or by modifying Zbus [5].  This paper 

presents an alternative method of line removal by creating a 

circulation current that completely self contains both an 

injection current and the original ‘base case’ line current. 

 A test injection current of (1∠0) amp is injected in and out 

of line j to be removed as shown in Fig. 1.  This creates a set 

of small [∆V] j ‘test’ voltages throughout the network. 

Injecting both the in and out currents at the same time reduces 

the matrix computational error.  Incremental voltages created 

on the from and to end of line j are ∆Vf j and ∆Vt j respectively. 

 

 

    ∆Vf j      Line j    ∆Vt j 

 

 

 

 

 ‘from bus’   +1∠0 amp     −1∠0 amp ‘to bus’ 

   Fig. 1  Inject 1 Amp In And Out Of Line j 

 

 Fig. 2 shows the incremental line j current (∆Vf j−∆Vt j)Yj 

being scaled by a complex number Sj in order to create a 

circulation current that is completely self contained as a loop 

current within line j.  This current includes the original base 

case load flow current as well as the portion of the injected 

current flowing in line j.   Line j base case current is not 

canceled by this process.  The purpose is to self-contain the 

base case current within the local circulation current set up by 

Sj so that no line currents from other adjacent lines from either 

the base case or from the injected currents flow across the 

gaps shown in Fig. 2.  In practice the line is not removed from 

the matrix solution, but the equivalent delta voltages in the 

network are the same as though line j has been removed. 

 

  Sj ⋅∆Vf j           Sj ⋅∆Vt j  

       Sj = Ib j+[Sj ⋅(∆Vf j −∆Vt j)⋅Yj] 
 

 

 

 

     from  +Sj amp     −Sj   to 

   Fig. 2   Single Line Removal Using Sj Injection Current 

 The steps to calculate Sj are given below.  The base case 

bus voltages are [V]b=[...Vfbj ...Vtbj ...]
T
 and the base case 

complex current in line j to be removed is Ibj.  The calculation 

of Ibj should not include shunt elements to ground such as line 

charging.  Shunts are also excluded from the [Y ] nodal 

admittance matrix to insure that incremental currents are 

contained within the transmission lines rather than being 

shorted to ground through shunt elements.  The absence of 

shunts produces results more consistent with full AC load 

flow solutions of line outages. 

 Line currents are conveniently measured on the ‘to’ end of 

every line because the standard tapped transformer model 

normally has the series Z directly connected to the ‘to’ bus.  

The transformer Z is used in the nodal admittance matrix [Y ] 

as though it is a regular transmission line.  Transformer tap 

and angle information is not included in the [Y ] matrix.  This 

simplification introduces error.  However, the examples in 

section VI show this error is small for a tap ratio of .95 and a 

small phase shift angle of 3 degrees. 

 The [Y ] complex nodal admittance matrix of the network 

is constructed from real and reactive in-line series 

impedances.  One bus in the network is grounded using a low 

impedance shunt element and remains at zero incremental 

volts at all times.  While any bus may be the grounded bus, it 

should be one that can regulate the voltage under severe line 

outage conditions in a full AC load flow.  No other shunt 

elements are to be included in [Y ]. 

 The next step is to find the set of all [∆V] j .   ∆Vf j and ∆Vt j 

are incremental voltages resulting from the injection of ±1∠0 
amp into line j as shown in Fig. 1.  Eqn. (1) shows this is a 

standard nodal admittance matrix solution.  The authors use 

the sparse matrix technique in [6] to efficiently solve (1). 

Other sparse matrix solution methods are presented in [7]. 

    [∆V]j = [...∆Vf j ...∆Vt j ...]
T 
= [Y]

-1
[...1...−1...]T    (1) 

 The [∆V]j calculated from the ±1∠0 amp injections for 

line j are saved for use in other calculations such as the 

outaging of many lines.  The complex scale factor Sj for 

scaling the incremental network bus voltages is given in (2). 

     S
I

V V Y
j

b j

f j t j j
=

− −

  

  1 ( )∆ ∆
      (2) 

 Sj is also the complex injection current that produces the 

totally self contained current in line j as shown in Fig. 2.  If 

less than .00001 per unit amps injection current flows through 

the rest of the network, there effectively are no alternative 

paths for the injected current to flow other than the outaged 

line j.  Then, the network will be broken into two islands by 

the outage of line j, if (3) is true. 

    1 00001− − ≤( ) .∆ ∆V V Yf j t j j       (3) 

 Eqn. (4) creates a temporary [V]new set of voltages for the 

outage of line j.  Line currents including line shunt currents 

       [V]new = [V]b + Sj ⋅[∆V] j      (4) 

are calculated using [V]new to check for line overloads with 

line j outaged.  This process is repeated for all single lines 

outaged and all [∆V] j are saved for use in other calculations. 
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IV.  MULTIPLE LINES OUTAGED 

 Multiple line removal is an extension of single line 

removal in which complex scalar Sj becomes complex vector 

[S] for n lines outaged simultaneously.  Sj elements of [S] are 

injection currents into and out of each of the lines j=1...n.  An 

example for n = 3 is shown in Fig. 3.  Ib1, Ib2, Ib3 are the base 

case line complex currents for lines 1, 2, and 3, respectively. 

∆I11, ∆I22, ∆I33 are the line self currents from the ±1∠0 amp 

injections on each individual line.  ∆I12, ∆I13, ∆I21, ∆I23, ∆I31, 

and ∆I32 are the line transfer coupling currents from the ±1∠0 
amp injections.  For example, ∆I12 is the current in line 1 from 

the ±1∠0 amp injection in line 2. 

 

  from    S1 = Ib1 + ∆I11S1 + ∆I12S2 + ∆I13S3   to 

Line 1 

       S2 = Ib2 + ∆I21S1 + ∆I22S2 + ∆I23S3 
Line 2 

       S3 = Ib3 + ∆I31S1 + ∆I32S2 + ∆I33S3 
Line 3 

 

  Fig. 3  Three Lines Outaged Example 

 

 Incremental ∆Iij currents on lines i for injections j are 
calculated as shown in (5) from the set of [∆V]j  calculated in 
Section III. 

     ∆Ii j = (∆Vf i j − ∆Vt i j) Yi       (5) 

 Rearranging the equations shown in Fig. 3 for n = 3 

produces a matrix equation for finding complex [S] vector. 
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 [S] complex scale factors (bus injection currents) 

simultaneously disconnect all n lines from the network. 

Eqn. (6) is solved using Gauss elimination since the matrix is 

dense and small.  Diagonal terms are used as pivot elements. 

A singularity of (6) occurs if a diagonal term becomes nearly 

zero.  This condition indicates a system separation which 

means a part of the system is isolated. 

 Skipping the outaging of lines that are electrically remote 

can be determined from the column elements of (6). 

∆I21 //// (1−∆I11) is the amount of current in outaged line 2 

due to an incremental current of 1 A in outaged line 1.  If this 

ratio is small (≤ .01), the two lines are remote from each other 

electrically.  Being remote means the multiple line outage 

case produces no new information over cases previously run. 

 After (6) is solved, the new bus voltages [V]new for the 

case of multiple n lines simultaneously outaged can be 

calculated using (7).  Line currents including line shunt 

       [V]new = [V]b + 

j

n

=
∑
1

Sj ⋅[∆V] j      (7) 

currents are calculated using [V]new to check for line 

overloads with lines j=1...n outaged.  The processes in 

sections III and IV are repeated for other sets of line outages. 

 

Summary Of Steps For Outaging Multiple Lines: 

1. Solve an initial load flow and store the complex line 

currents for this ‘base case’ with no lines outaged. 

2. Outage each of the lines individually using (1)-(4), test 

the rest of the network for line overloads, and store in 

memory or disk the incremental line currents in all lines 

resulting from the 1 A injections for each line outaged. 

3. Set up a procedure for stepping through each outage 

configuration for N-2, N-3, etc. 

4. Calculate a probability of occurrence for each multiple 

line outage configuration and skip the simulation of 

configurations with too low a probability. 

5. Construct matrix (6) from the currents in step 2. 

6. Calculate the electrical ‘remoteness’ of lines being 

outaged by testing all the column elements of (6); 

example: ∆I21 //// (1−∆I11), etc.  If any of these ratios 
are below a small number (.01 for example), then skip the 

outage, because the same lines will have been outaged 

individually at another point in the process of modeling 

all combinations of line outages. 

7. Solve for new [S].  Matrix (6) is inverted using Gauss 

elimination and diagonal term pivoting.  Singularity 

occurs if the lines outaged have isolated one or more 

buses from the main network. 

8. Calculate new line currents for this contingency using the 

new bus voltages calculated in (7).  

9. Overloaded lines are found and reported. 

10. Steps 3 - 9 are repeated for each multiple line outage. 
 

V.  REAL POWER MODEL 

 Sections III and IV presented line outage models based on 

linear summations of complex incremental line currents. 

However, complex incremental currents are not directly 

usable in linear programming and probabilistic models based 

on the use of real numbers.  In [1] the real power distribution 

factors Hi,k are the set of per unit incremental real powers in 

all lines i due to all generators k.  The Hi,k factors are 

calculated in [1] using incremental AC load flow solutions. 

This section presents a method for modifying the Hi,k factors 

to represent real power distributions for each multiple line 

outage configuration. 
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Real Power Matrix Approach Fails: 

 

 A line outage model was developed using all real powers 

in a matrix similar to (7) for multiple lines outaged in order to 

calculate a set of real [S] scale factors.  The real power model 

worked well in predicting incremental line powers for single 

line outages.  It frequently failed to predict system separation 

because the real matrix was not singular enough when the 

system was in a state of islanding.  It performed poorly for 

multiple line outages in predicting real power flow 

distributions.  Subsequently, the approach using only a real 

power matrix to model line outages was abandoned. 

 

Real Powers From Complex Currents Approach Succeeds: 

 

 The successful solution approach is to perform line 

outages using (1)-(7).  These contain complex incremental 

currents and voltages due to line outages.  Real incremental 

powers are calculated as a secondary calculation from the 

complex incremental currents in the line outage model. 

 Each generator k has a set of Hi,k real power per unit 

distribution factors for all lines i.  For any line or lines 

outaged, each set of power distribution factors for each 

generator is updated as a separate operation for each 

generator.  These updated factors are calculated and used 

immediately and then disposed of because there are far too 

many to store in computer files or memory.  The updating 

process presented here is very computationally efficient and is 

orders of magnitude faster than running successive load flows 

to generate new distribution factors. 

 Assume line j is to be outaged.  Generator k has a per unit 

real power flow in line j of Hj,k.  The objective here is to open 

this line and observe the Hj,k power redistribution in the 

network.  However (2) requires that a line current be 

interrupted rather than a real power flow.  The per unit line j 

current to be interrupted is calculated from the real power 

         Ij  =  
H

V

j k

tbi

,
*







,       (8) 

where Ij is a complex current representing real power in line j 

as though it were a base case current.  Eqns. (2)-(4) are now 

applied to open line j and interrupt this current.  New 

incremental per unit line currents ∆Ii j throughout the network 
are calculated.  The reverse process of (8) is used in (9) to 

turn the line i incremental currents due to line j being outaged 

back into incremental real power flows ∆Hi. 

          ∆Hi = Re{Vtbi ⋅∆Ii j
*
}       (9) 

The Hi,k real power distribution factors are updated using (10) 

and the outaged line j Hj,k is set to 0 since it has no flow. 

         Hi,k  = Hi,k + ∆Hi           (10) 

 The above example is for a single line outaged.  The same 

process is used for multiple lines outaged.  Eqns. (5)-(7) are 

used to calculate the Sj factors. 

    ∆Hi =  Re{Vtbi⋅(
j

n

=
∑
1

Sj ⋅∆Iij)
*
}        (11) 

 Then (11) is used to calculate the set of incremental 

powers due to the simultaneous outages of the many lines 

j=1...n for i≠ j. 
 

VI.  SMALL TEST SYSTEM EXAMPLE 

 Fig. 4 shows a very small test system used to compare the 

zip flow method results with load flow.  T/Ø is the 

transformer tap ratio and angle in degrees.  R+jX is a series 

resistance and reactance on a 100 MVA per unit base.  V1 

voltage at the generator bus G is held constant at 1 per unit 

and zero degrees.  V2 is a complex variable voltage at bus 2. 

Each 50 MVA rated line is outaged for various combinations 

of tap and line impedance. 

 

   V1=1/0°  T/Ø :1  R+jX      V2 

      flow A 

            flow C 

90 MW  G               90+j0 

+ losses    flow B .05 + j.1  flow D 

 

Fig. 4  A Very Small Test System 

 The top line in Fig. 4 is modified to represent a regular 

line in cases 1 and 5, a series capacitor in case 2, a phase 

shifting transformer in case 3, and a voltage regulating 

transformer in case 4.  Table 1 shows zip flow versus load 

flow results of outaging these lines.  Flows A and B are shown 

in actual MW and MVAR for AC load flow (ACLF) whereas 

flows C and D are listed in percent of line current loading on 

the ‘to’ end of each line, which is the metered end in the zip 

flow (ZIPF) calculations. 

 Case 1 in Table 1 has identical lines.  Outaging either line 

shows the zip flow solution predicts line current will increase 

from 92% of line rating to 184%.  The AC load flow shows 

actual loading to be 190%.  The 6% zip flow error is due to 

the decrease in V2 voltage and is roughly equal to twice the 

drop in voltage.  Case 2 shows that the zip flow with complex 

numbers easily handles odd R and X combinations accurately. 

 Cases 3 and 4 show that tapped transformers modeled with 

this zip flow solution produce progressively greater error as 

the tap is moved away from unity.  Case 4 indicates that the 

error introduced by the .95 tap ratio may produce either a 

larger or smaller error than the voltage drop in Case 1.  The 

phase shifting transformer in Case 3 introduces error for such 

a small angle across the transformer. 
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Table 1.  AC Load Flow Versus Zip Flow Results 

Type    R X T Ø    FlowA   FlowB  C      D     V2 
Case 1.  Both lines are identical. ---------------------------------------------------- 

ACLF .05 .1  1 0°    46.1+j2.1  46.1+j2.1 92%   92% .976 -2.6° 

ACLF Outage either line.      94.5+j9.0    190% .948 -5.4° 

 ZIPF            184% 

Case 2.  The top line has a series capacitor. -------------------------------------- 

ACLF .05 -.02  1 0°   19.4+j34.5  74.7-j34.3 79%  164% .956  -.1° 

ACLF Top line is outaged.  ------  94.5-j1.8 -----  189% .953 -1.1° 

 ZIPF           -----   188% 

ACLF Bottom line is out.   94.5+j9.0     -----  190%  ----- .948 -5.4° 

ZIPF           188%  ----- 

Case 3.  The top line is a phase shifter. -------------------------------------------- 

ACLF  .0 .1  1   -3° 71.8+j8.6  18.3-j3.0 145%  37% .994 -1.1° 

ACLF Top line is outaged. ------  94.5-j9.0 -----  190% .948 -5.4° 

 ZIPF           -----   181% 

ACLF Bottom line is out.  90.0+j8.2     -----  181%  ----- .996 -2.2° 

ZIPF           181%  ----- 

Case 4.  The top line is a tapped transformer. ------------------------------------- 

ACLF  .0 .1 .95 0° 55.2+j39.6  36.0-j33.0 129%  98%  1.016-3.0° 

ACLF Top line is outaged.  ------  94.5-j9.0 -----  190% .948 -5.4° 

 ZIPF           -----   177% 

ACLF Bottom line is out.  90.0+j7.4     -----  172%  -----  1.049-4.7° 

ZIPF           177%  ----- 

Case 5.  Both lines are identical and the load is 90 MVAR. ------------------- 

ACLF .05 .1  1 0° 1.1+j47.2  1.1+j47.2 94%   94% .952 -1.4° 

ACLF Outage either line.       5+j100    200% .899 -2.9° 

 ZIPF            189% 
 

 This example uses the complex injection currents to 

estimate new line currents.  The phase shifting transformer is 

a power flow modifying device and a more accurate approach 

with a phase shifting transformer is to create an incremental 

real power flow model like the approach taken in (1) and then 

interrupt the real power flow in the phase shifting transformer 

as described in Eqns (8)-(11).  The process for accurately 

modeling the phase shifting transformer in the context of the 

method in this paper is not yet developed. 

 Case 5 shows the zip flow works equally well for both 

reactive power flows and real power flows.  This outcome is 

only true when complex number matrices are used. 

VII.  LARGE SYSTEM PLANNING EXAMPLE 

 A 4233 bus 5161 line test system is used to compare the 

zip flow method in this paper with full AC load flow.  This is 

the same large scale example that was used in [1]. Testing is 

limited to outaging 99 lines within the City of Austin control 

area.  For N-3 testing this is 161800 unique line outage 

configurations.  In order to have many line overloads, the 

Austin load is increased from 1666 MW to 2334 MW and a 

540 MW generation plant inside the local Austin area is 

relocated to a major transmission bus remote from Austin. 

The imported power from remote generation is 1498 MW. 

The zip flow for testing all 161800 line outage configurations 

through N-3 is one minute for a 133 MHz Pentium computer. 

 The authors use .01 hours per year (1.14e-6 probability) as 

a cutoff, i.e. any multiple outages less than this cutoff are not 

run.  The experience of the authors is that the inclusion of 

contingencies with probabilities below this cutoff adds a 

negligible amount of new information.  The examples shown 

in sections VI and VII use an FOR (forced outage rate) of .1% 

for lines, 4% for transformers.  If two or more lines are 

connected to the same bus, an additional 1.e-4 is added to the 

multiple line outage probability. 

 To test the accuracy of the zip flow results, all of the 1602 

cases were solved using a full AC load flow. Autotransformer 

taps were held constant in the AC load flow cases.  About 

four hours of computer time was required.  The full AC load 

flow had 51 occurrences of voltage collapse.  In each of the 

voltage collapse cases the zip flow also had severe line 

overloads.  For the remaining non-voltage collapse cases, Fig. 

5 below shows how well the zip flows predict line overloads 

compared with full AC load flows. 
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Fig. 5  Zip Flow Versus AC Load Flow 

 In Fig. 5, the circles represent single line outages, 

diamonds represent double line outages, and triangles 

represent triple line outages.  Points that lie on the line have 

zero error.  Many of the zip flow points are slightly below the 

reference line because the actual load flow voltages dropped 

under the contingency conditions and the actual line current 

became larger than predicted by the zip flow.  However, the 

overall performance of the zip flow is good as shown in Fig. 5 

and the results are quite acceptable for planning a future 

transmission system.  The very high zip flow solution speed of 

over 200 times that of an AC load flow allows many more 

options to be examined than would otherwise be possible. 

 The zip flow can be run another way using only real power 

flows as described in [1].  How well this works is illustrated 

by the following test.  Fig. 6. shows autotransformers A1...L2 , 

line D, and line P will be monitored as several combinations 

of lines are outaged. 
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     D        A1 

     City of Austin        A2   ERCOT 

 

    138 kV System        L1 345 kV System 

     P        L2 

 

Fig. 6  City of Austin Large System Network Test Case 

 Tables 2 and 3 show the MW flows on the six lines.  ‘Out’ 

refers to a line being outaged for the specific case.  Table 3 has 

the same line outages as Table 2 and includes 710 MW outage 

of generation at bus D.  Each box lists the line flow MW for the 

zip flow solution, the AC load flow solution, the difference in 

MW which is the error, and the percentage error based on 480 

MVA line and autotransformer ratings.  Table 2 shows the 

multiple line outage model produces excellent approximations of 

line flows for up to the N-3 contingency level for this large system. 

 In this example, the City of Austin load level is maximized 

to  2334 MW with 74 MW transmission losses. 

Table 2.  Transmission Line Flows Due To Line Outages, 

No Generation Outaged 

Zip Flow - AC Load Flow = Zip Flow Error 

 

Case 

Line 

A1 

Line 

A2 

Line 

D 

Line 

L1 

Line 

L2 

Line 

P 

 

base 

 

-277.0 

-277.2 

0.2 

<1% 

-270.6 

-270.8 

0.2 

<1% 

260.9 

259.9 

1.0 

<1% 

-297.1 

-297.3 

0.2 

<1% 

-297.1 

-297.3 

0.2 

<1% 

334.7 

332.6 

2.1 

<1% 

 

1 

 

 

out 

-423.8 

-416.5 

-7.3 

1.5% 

225.6 

223.9 

1.7 

<1% 

-329.1 

-332.2 

3.1 

<1% 

-329.1 

-332.2 

3.1 

<1% 

380.2 

381.9 

-1.7 

<1% 

 

2 

 

-313.3 

-315.8 

2.5 

<1% 

-306.1 

-308.5 

2.4 

<1% 

310.0 

312.7 

-2.7 

<1% 

 

out    

-505.3 

-499.1 

-6.2 

1.3% 

271.6 

264.9 

6.7 

1.4% 

 

3 

 

 

out    

 

out    

103.3 

107.5 

-4.2 

<1% 

-438.5 

-442.4 

3.9 

<1% 

-438.5 

-442.4 

3.9 

<1% 

538.4 

536.8 

1.6 

<1% 

 

4 

 

 

out    

-486.3 

-482.9 

-3.4 

<1% 

275.4 

278.2 

-2.8 

<1% 

 

out    

-567.7 

-566.5 

-1.2 

<1% 

316.1 

312.8 

3.3 

<1% 

 

5 

 

-519.1 

-517.2 

-1.9 

<1% 

-507.1 

-505.2 

-1.9 

<1% 

591.3 

589.1 

2.2 

<1% 

 

out    

 

out    

-91.7 

-92.7 

1.0 

<1% 

 

6 

 

 

out    

 

out    

148.1 

158.3 

-10.2 

2.1% 

 

out    

-795.2 

-794.9 

-0.3 

<1% 

480.9 

473.8 

7.1 

1.5% 

 

7 

 

 

out    

-876.6 

-864.5 

-12.1 

2.5% 

591.3 

593.7 

-2.4 

<1% 

 

out    

 

out    

-91.7 

-92.9 

1.2 

<1% 

 

The four autotransformers A1...L2 are loaded to a total of 

1143 MW and 430 MVAR in the base case.  Internal COA 

generation is 910 MW.  None of the lines listed in Tables 2 

and 3 are overloaded in the base case and all voltages are 

nominal (greater than .95 per unit).  The base case has all 

generation running at maximum output with area loads scaled 

to equal area generation owned plus firm purchases less firm 

sales less area loss. 

 Table 3 includes an additional outage of 710 MW 

generation at bus D on top of the same line outages in Table 

2.  The linear line distribution factors produce reasonably 

accurate approximations of line flows in the zip flow ‘base’ 

case considering that they are nothing more than sums of real 

numbers from lookup tables.  The process of adjusting the H 

line distribution factors works well as evidenced by the low 

errors in Table 3 for extremely wide variations in power flow 

due to the multiple line outages. 

 

Table 3.  Transmission Line Flows Due To Line Outages, 

710 MW Generation Outaged 

Zip Flow - AC Load Flow = Zip Flow Error 

 

Case 

Line 

A1 

Line 

A2 

Line 

D 

Line 

L1 

Line 

L2 

Line 

P 

 

base 

 

-289.2 

-294.4 

5.2 

1.0% 

-282.5 

-287.6 

5.1 

1.0% 

365.7 

377.6 

-11.9 

2.5% 

-280.0 

-279.9 

-0.1 

<1% 

-280.0 

-279.9 

-0.1 

<1% 

341.8 

339.9 

1.9 

<1% 

 

1 

 

 

out 

-442.4 

-442.5 

0.1 

<1% 

328.8 

338.7 

-9.9 

2.1% 

-313.4 

-317.2 

3.8 

<1% 

-313.4 

-317.2 

3.8 

<1% 

398.4 

392.4 

6.0 

1.3% 

 

2 

 

-323.5 

-330.5 

7.0 

1.5% 

-316.0 

-322.9 

6.9 

1.4% 

411.9 

426.1 

-14.2 

3.0% 

 

out    

-476.1 

-470.6 

-5.5 

1.1% 

282.4 

276.6 

5.8 

1.2% 

 

3 

 

 

out    

 

out    

201.1 

214.1 

-13.0 

2.7% 

-427.5 

-435.1 

7.6 

1.6% 

-427.5 

-435.1 

7.6 

1.6% 

554.5 

557.6 

-3.1 

<1% 

 

4 

 

 

out    

-501.9 

-505.3 

3.4 

<1% 

376.2 

389.2 

-13.0 

2.7% 

 

out    

-540.6 

-541.8 

1.2 

<1% 

328.4 

327.0 

1.4 

<1% 

 

5 

 

-517.4 

-520.5 

3.1 

<1% 

-505.3 

-508.5 

3.2 

<1% 

677.0 

681.6 

-4.6 

<1% 

 

out    

 

out    

-59.9 

-60.3 

0.4 

<1% 

 

6 

 

 

out    

 

out    

244.8 

262.3 

-17.5 

3.6% 

 

out    

-775.4 

-783.2 

7.8 

1.6% 

498.4 

496.4 

2.0 

<1% 

 

7 

 

 

out    

-873.6 

-870.6 

-3.0 

<1% 

677.0 

684.3 

-7.3 

1.5% 

 

out    

 

out    

-59.9 

-60.4 

0.5 

<1% 
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 VIII.  CONCLUSIONS 

 

 The zip flow model presented in this paper allows multiple 

lines to be outaged in a network using summations of complex 

scaled voltages from 1 amp current injections. Matrix 

modification is not necessary for any set of lines outaged. 

The method is shown to produce good results compared with 

full AC load flow solutions provided voltages swings are not 

excessive and transformer taps are near unity.  Execution 

speeds greater than 200 times AC load flow have been 

demonstrated.  This zip flow model is applicable to large 

networks using AC load flow, linear programming, and 

probabilistic load flow methods and represents an important 

contribution to the industry in the analysis of power system 

reliability adequacy. 
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