A Mathematical Procedure For Finding Exact Hourly LOLPs (Loss of Load Probability) For Large Electric Grids.

by

Eugene G Preston, PE, PhD

The Austin Physics Meetup Group

Austin, Texas

June 21, 2018

The electric load of a system like ERCOT (Electric Reliability Council Of Texas) varies all the time. The load peaks in the summer months due to a large air conditioning load. Right now the summer peak demand is about 70,000 MW. The graph below shows the hourly profile of the 2010 historical year scaled to have a 70 GW peak.

Generators are not 100% reliable. They are constantly failing and being repaired. An example with three generators of capacity 10, 15, and 20 MW with outage probabilities of 0.1, 0.2, and 0.3 shown as a binary tree of all combinations of 'up' and 'down' states:

			Individual States		Cumulat		tive	
Unit 1	Unit 2	Unit 3	MW Pr	MWO	MWO) Pr	∑Pr	
		□ 20, .7	45, .504	0	0	.504	1.000	
	^{15, .8}	0, .3	25, .216	20	10	.056	.496	
^{−10, .9} −−	0, .2	20, .7	30, .126	15	15	.126	.440	
		L 0, .3	10, .054	35 so	ort 20	.216	.314	
		□ 20, .7	35, .056	10	25	.014	.098	
	15, .8	0, .3	15, .024	30	30	.024	.084	
	└ _{0, .2} ─	20, .7	20, .014	25	35	.054	.060	
FOR = forced outage ra	ates	L 0, .3	0, .006	45	45	.006	.006	

The sum of units 'up' is the MW column. The probabilities are multiplied to the ends of each branch. The sum of all probabilities is 1. The MWO (megawatts outaged) is the 45 MW total minus the MW available. The MWO can be sorted in ascending order along with the branch probabilities. Summing the branch probabilities creates a distribution.

When we plot this distribution, which we call the COPT, or capacity outage probability table, we need to interpret it this way: (note - the points below are not from the above table)

The binary tree MW and probabilities are shown mapped to a cumulative distribution.

Now we can easily add one more generator to the left of the binary tree and this causes two new trees to be formed and two new LOLP curves to be formed.

 $[F(x)^{+} = (1 - FOR_{k}) \cdot F(x)^{-} + FOR_{k} \cdot F(x - C_{k})^{-}] \forall x = 0, x_{max}$

Once the COPT is created, the indices LOLE (loss of load expectation), LOLH (loss of load hours), and EUE (expected unserved energy) are calculated directly from the LOLPs:

LOLE = \sum daily maximum LOLPs for a year (days/year)

 $LOLH = \sum hourly LOLPs$ for a year (hours/year)

EUE = ∑ integral of all LOLP×MW from net MW demand down to 0 MW every hour (MWh) IEEE 1979 RTS (Reliability Test System)

COPT Array Size Is Small and Execution Speed Is High

- The 1979 RTS tree was large; 32 generators $2^{32} > 4$ billion states.
- The 1979 RTS COPT size in RTS3 "exact" LOLPs is 2652 numbers.
- COPT saves space by use of integer 1 or .1 MW grid increments.
- The 1996 RTS tree was larger; 96 generators $2^{96} > 10^{28}$ states.
- The 1996 RTS COPT size in RTS3 "exact" LOLPs is 5156 numbers.
- The ERCOT system with 380 generators COPT is 16296 numbers.
- The CAISO system with 530 generators COPT is 26961 numbers.
- Creation of COPT uses linear arrays which are efficiently executed.
- Once COPT is created, LOLP becomes a simple lookup (no math).

RTS3 generator data looks like:

• RTS3 hourly data looks like:

YYYYMMDDHH,D, DEMAND, HYDRO, WIND, SOLAR, SOLARR(rooftop), 2020010101,4,0.40740,0.1842,0.850074,0.000000,0.000000, 2020010102,4,0.39809,0.1990,0.909606,0.000000,0.000000, 2020010103,4,0.39639,0.1638,0.843176,0.000000,0.000000, 2020010104,4,0.39852,0.1678,0.819610,0.000000,0.000000, 2020010105,4,0.41540,0.1626,0.796922,0.000000,0.000000, 2020010106,4,0.44828,0.1410,0.773835,0.000000,0.000000, 2020010107,4,0.48201,0.1506,0.681646,0.000000,0.000000, 2020010108,4,0.48668,0.2886,0.541848,0.416726,0.145686, 2020010109,4,0.48862,0.2514,0.464612,0.600515,0.365249, 2020010110,4,0.49224,0.3386,0.309143,0.671727,0.531686, 2020010111,4,0.49111,0.3506,0.169146,0.703056,0.635784,

• RTS3 program results versus the 1986 paper results.

1979	Base Case = 285	60 MW Load,
3405	MW Total Genera	tion, LFU=0
	1986 Paper	RTS3 Program
LOLE	= 1.36886 d/y	1.368863 d/y
LOLH	= 9.39418 h/y	9.394175 h/y
EUE	= 1176 MWh	1176 MWh
=====		
1979	Base Case with	3 State Gens
	<u> 1986 Paper</u>	RTS3 Program
LOLE	= 0.88258 d/y	0.882573 d/y
1070	======================================	
1979	1006 Dapar	ZO LEU DEC2 Drogram
тоте	$-\frac{1900 \text{ Paper}}{1.45110 \text{ d/m}}$	$\frac{\text{RISS PLOYLAM}}{1 \text{ AE1100 } d/m}$
	- 1.45110 u/y	1.451109 d/y
1979	Base Case with	 10% T.FTT
т <i>у</i> і <i>У</i>	1986 Paper	RTS3 Program
TOLE	$= \frac{1000 \text{ faper}}{3.99763 \text{ d/v}}$	$\frac{1000 \pm 1000 \pm 1000}{3.986904}$ d/v
ЦСТП		

	=====		
	1979	Base Case, D 1986 Paper	emand = 2394 MW RTS3 Program
_	LOLE	= 0.04756 d/	y 0.047559 d/y
	1979	Base Case, D 1986 Paper	emand = 3135 MW RTS3 Program
	LOLE	= 6.68051 d/	y 6.680512 d/y
=	===== 1979	Base Case wi 1986 Paper	======================================
	LOLE	$= \frac{1.91130}{1.91130} d/$	y 1.911295 d/y
=	1979	Base Case wi 1986 Paper	th 15% LFU RTS3 Program
	LOLE	= 9.50630 d/	y 8.205766 d/y

• RTS3 program results for two RTS 2020 cases, both with LOLE = 0.1 d/y.

2020 RTS has three areas that individually peak at 2850 MW. The coincident peak demand is 8191.8 MW. The cases have 8076 MW conventional generation and 1000 MW of hydro. In the first 2020 Model RTS case the LFU = 0%, wind is 810 MW, and 500 MW solar is split between rooftop and tracking PV.

Indices	for a	0.00% LI	FU:
LOLE	=	0.100005	d/y
LOLH	=	0.236470	h/y
EUE MWh	=	37.	MWh
EUE ppm	=	0.98	pu ppm
LOLP>.00	04=	117	hrs

A second RTS case is run that utilizes VER capacities of 2508 MW wind and 2716 MW solar. The LFU is increased to 7.68% to achieve LOLE = 0.1 d/y.

Indices	for a	7.68% LI	FU:
LOLE	=	0.100048	d/y
LOLH	=	0.282378	h/y
EUE MWh	=	58.	MWh
EUE ppm	=	1.54	pu ppm
LOLP>.00)04=	168	hrs

GDATA File: G2020.TXT <- NREL 2020 RTS generator data with wind and solar on Github HDATA File: H2020.txt <- NREL 2020 RTS hourly file with wind and solar on Github

2020 IEEE RTS 8192 MW load 8076 MW conventional generation with 1000 MW hydro 810 MW wind 500 MW solar. 2020 IEEE RTS hourly demand wind hydro and solar profiles created from https://github.com/GridMod/RTS-GMLC

MAX GENR	=	8076	MW	
VARBL RES	=	1043	MW	
GENR+VRES	=	9119	MW	
MAX COPT	=	4524	(90000	MAX)

```
2020 RESULTS:
```

PERIOD	=	8784	HOURS
PEAK DEMD	=	8191.800	MW
RESERVE	=	11.3	00
LOAD ENGY	=	37656.	GWh
LOAD FACT	=	52.331	00
PEAK NETD	=	7017.141	MW (DEMD-VR)
VR E USED	=	7457.	GWh
VR E LOST	=	0.	GWh
Indices fo	or a	0.00% LH	FU:
LOLE (AM)	=	0.000000	d/y
LOLE (PM)	=	0.100005	d/y
LOLE	=	0.100005	d/y
LOLEV **	=	0.100005	events/y
LOLEMW	=	156.	MW
LOLH	=	0.236470	h/y
LOLH/event	<u>_</u> =	2.364584	h/event
EUE MWh	=	37.	MWh
EUE ppm	=	0.98	pu ppm
EUE 🖇	=	0.000098	00
LOLP>1.E-4	1=	117	hrs

Variable Resource Capacity Credits Max Net Demand hrs for LOLP>1.E-4:

76.6% 9.3% 43.1% 37.6%

** LOLE measures events/24 hrs LOLEV measures events/12 hrs

2020 NREL RTS3 Update Adding Wind and Solar NREL Project Overview:

https://github.com/GridMod/RTS-GMLC/blob/master/RTS-GMLC.pdf

2020 NREL RTS3 program code and data:

https://github.com/GridMod/RTS-GMLC/tree/master/RTS_Data/FormattedData/RELIABILITY

RTS3 program (with a new storage model): http://egpreston.com/RTS3S.zip

• RTS3 automatically finds a demand to achieve a desired LOLE:

GENERATOR	DATA FILE NAM	1E: G20					
TARGET LOL	E (OR RETURN)	: 1.0 (desir	ed LOLE)				
RTS3 is e	xecuting						
calculati	ng the COPT						
LOLE d/y	MW Demand	Upper MW	Lower MW				
30.199082	9999.000	9999.000	0.00000				
0.000000	4999.500	9999.000	4999.500				
0.001158	7499.250	9999.000	7499.250				
1.397416	8749.125	8749.125	7499.250				
0.068313	8124.188	8749.125	8124.188				
0.349934	8436.656	8749.125	8436.656				
0.747597	8592.891	8749.125	8592.891				
1.021407	8671.008	8671.008	8592.891				
0.869544	8631.949	8671.008	8631.949				
0.942400	8651.479	8671.008	8651.479				
0.980704	8661.243	8671.008	8661.243				
1.002307	8666.125	8666.125	8661.243				
0.989530	8663.684	8666.125	8663.684				
0.994424	8664.905	8666.125	8664.905				
0.995016	8665.515	8666.125	8665.515				
1.000506	8665.820	8665.820	8665.515				
1.000449	8665.668	8665.668	8665.515				
0.995484	8665.591	8665.668	8665.591				
0.995484	8665.630	8665.668	8665.630				
0.995484	8665.649	8665.668	8665.649				
0.995484	8665.658	8665.668	8665.658				
1.000449	8665.663	8665.663	8665.658				
1.000449	8665.663	8665.663	8665.658 <	finished	in	8	sec
$LOLE \sim = 1$	8198.8 was	the LOLE = 0.1	d/y load.				