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    A new probabilistic load flow (PLF) model for calculating the reliability of 

large nonequivalenced electric networks with transmission constraints is given.  

Generation loss of load probability (LOLP) and expected unserved energy (EUE) is 

calculated first without transmission constraints as a function of load level.  Then a 

two step process is used to 1) calculate the cumulative probabilistic line flows from 

random generator failures and 2) perform load-generator reductions to remove line 

overloads.  The additional EUE and LOLP due to transmission constraints is 

calculated.  New piecewise-quadratic (PQ) convolution methods are used to 

accurately calculate probabilistic line flows for the total set of generator failure 

configurations on every transmission line (2
300
10

90
 for the 300 generator Texas 

system) in a reasonable amount of computation time.  Complete coverage of all 

generator outage configurations resolves problems associated with Monte Carlo and 

other enumeration methods.  A new method for outaging multiple transmission lines 

allows the majority of probability space of all transmission line outage events to also 

be calculated in conjunction with the generation outages.  A large network example is 

presented in which the benefit of an additional autotransformer in a large system is 

calculated.  Another example using the IEEE RTS benchmarks the PLF model against 

a full configuration enumeration with linear programming solution. 
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Acronyms and Definitions 

 

 autotransformer   a transformer in which the voltage on one side can be held 

            constant by varying the transformer turns ratio 

 BEPC        Brazos Electric Power Cooperative 

 bus          a node in the network, usually associated with a substation 

 CADPAD      a Westinghouse distribution system analysis program 

 COA         City of Austin, see also EUD 

 COB         City of Brownsville 

 configuration    the status of all lines and generators taken collectively as a 

            collection of the on, off, and derated states of each individually 

 convolution     a process for calculating a distribution of the probability of all 

            possible outcomes from random and independent events 

 CPL         Central Power and Light 

 CPS         City Public Service 

 COMREL      a 200 bus composite generation-transmission program 

 control area     a set of buses and lines within the network in which a single 

            owner specifies load, generation, and other requirements 

 CREAM       medium scale 500 bus composite reliability multi-area 

            evaluation program based on the Monte Carlo method 

 decreasing      an Hj,k that reduces line j flows and does not increase xmax 

 DFOR        Derated MW generator Forced Outage Rate 

 DOE         US Government Department of Energy 

 dominant       the largest of the sum of line incremental flows, either + or  

 EFOR        Equivalent Forced Outage Rate (for 2 states) - see GADS def. 

 ELDC        Equivalent Load Duration Curve 

 ENPRO       a Monte Carlo production costing program with limited 

            transmission constraints capability 



 vii 

 EPRI         Electric Power Research Institute 

 ERCOT       Electric Reliability Council of Texas 

 EUD         City of Austin Electric Utility Department 

 EUE         Expected Unserved Energy in MWh, the load shedding energy 

 FOR         Forced Outage Rate - see GADS for definitions 

 GADS        Generation Availability Data System published by NERC 

 GATOR       Florida Power Corporation’s composite reliability program 

 GENH        probabilistic Monte Carlo generation planning program used 

            by the City of Austin in the 1980’s 

 GRI         Generator Reliability Indicators: FOR, EFOR, etc. 

 GRIP        composite multi-area generation reliability program with 

            non-looped areas radial from a single central area 

 G-T         generation and transmission 

 H          a random access binary file storing array Hi,k numbers 

 H
T
          the transpose of file H 

 increasing      an Hj,k that causes an increase in line j value of xmax 

 LCRA        Lower Colorado River Authority 

 LLS         Loss of Load Sharing (proportionately at all load buses) 

 load flow       an electric power system mathematical solution technique 

 LOL         Loss Of Load in megawatts 

 LOLP        Loss Of Load Probability = FG(x) 

 LP          Linear Program, an optimum solution to a set of constraints 

 LST         Load Shedding Table (optimum generation-load pairs) 

 MAPS        a multi-area simulation program by General Electric 

 MAREL       a multi-area simulation program by Power Technologies, Inc. 

 Markov       a process for calculating probabilities of discrete states 

 MEC         Medina Electric Cooperative



 viii 

 MaxGen        the unique configuration of all generators in service running 

            at full output; the maximum load+losses that can be served 

 MONA       Mixture Of Normals Approximation 

 MWh         megawatthours; used as an EUE measure 

 NARP        N Area Reliability Program used by ERCOT 

 NERC        North American Electric Reliability Council 

 NLLS        No Loss of Load Sharing (load shedding assigned explicitly) 

 OPF         Optimum Power Flow, an optimizing load flow technique 

 PL          Piecewise Linear, a linear interpolation technique 

 PLF         Probabilistic Load Flow, the method presented in this thesis 

 PQ          Piecewise Quadratic, a quadratic interpolation technique 

 PTI          Power Technologies Incorporated 

 PROMOD      a production costing program based on convolution techniques 

 PSSE        deterministic load flow program by Power Technologies, Inc. 

 p.u.         per unit 

 RAM         random access memory (a computer’s main memory in Mb) 

 recursive       each distribution is built on a preceding distribution 

 REI         Radial Equivalent Independent equivalent network model  

 reliability       a measure of generation and transmission adequacy for 

            supplying electric power 

 RTS         IEEE Reliability Test System, a small network for testing 

 R/X ratio       refers to the magnitude of the line resistance to reactance ratio 

 single area      generation reliability assessment with no transmission model 

 slack         generation power adjusted to meet area power requirements 

 state         a line or generator in an on, off, or derated status 

 STEC        South Texas Electric Cooperative 

 STP         South Texas Project 



 ix 

 swing        generation power adjusted to meet total system requirements 

 substation      a point at which one or more transmission lines terminate 

 SYREL       a small network model predecessor of TRELSS 

 tail          far right end of a decreasing cumulative distribution function 

 tie line        a transmission line connecting two control areas 

 TMPA        Texas Municipal Power Authority 

 TRELSS       newest EPRI transmission reliability program 

 TU          Texas Utilities 

 UCS         Utility Consulting Service, performs studies for ERCOT 

 virtual generator   power injected into a bus to cancel load on that bus 

 virtual generation  a set of virtual generators to cancel (shed) load in an area 

 WSCC        Western Systems Coordinating Council 

 WTU        West Texas Utilities 

 zipflow         a fast approximation method for outaging transmission lines 



 x 

Nomenclature 

 

 ~           approximately 

            approximately equal to 

   x = 0, xmax , h   for all x from 0 to xmax incrementing in h MW steps 

 i , i         outage rate (frequency) and repair rate of component i 

 Bi          shunt reactance at bus i in per unit ohms 

 Ck , FORk , EFORk  generator k unit MW rating, Equiv. Forced Outage Rate - p.u. 

 Dk , DFORk     generator k MW derating, Derating Forced Outage Rate - p.u. 

 EUE(x)       Expected Unserved Energy in MWH for one hour = FG(x) 

 FA(x)         generation availability distribution function 

 FE(x)         ‘Exact’ discrete generation cumulative distribution function 

 FG(x)         PQ generation outage cumulative distribution function 

 Fj(x)         PQ cumulative flow distributions for line j (two directions) 

 F(x,y)        2D cumulative line-generation distribution function 

 Fp(x,y)        2D line-generation probability partial density function 

 Gk          generator k discrete C, FOR, EFOR, and D, DFOR states 

 G1+...+GNg      indicates convolution of discrete states, k = 1...Ng 

 GkFG        indicates PQ convolution of generator k’s states into FG(x) 

 [GkFG]k=1, Ng     indicates PQ convolution of all Gk states for k=1...Ng 

 h           MW grid increment spacing for FG(x) PQ and PL functions 

 hj           MW grid increment spacing for Fj(x) PQ line distributions 

 Hi,k          real per unit line distribution for line i and generator k 

 I and I
*
        a complex current and its conjugate in per unit amperes 

 Iij           complex current in line i for 1 amp injection on line j 

 Ibj          base case line j complex current to be interrupted 



 xi 

 [I ]b           vector of n base case complex currents to be interrupted 

 [I ]           nn matrix of complex line I’s from [V ]i=1, n for n injections 

 INT(x)        next lowest integer value of real number x 

 [J ]          Jacobian real matrix used in load flow solution  

 MWO        megawatts outaged 

 no          number of lines simultaneously outaged 

 Na          number of load areas 

 Nb          number of load flow buses (electrical nodes in the matrix) 

 Ng          number of generators 

 Nt          number of transmission lines and transformers 

 p           either a state probability or an initialization probability 

 Pr [X  x]      probability random variable X is > real number x 

 Pi          load flow bus i real power mismatch (+ is into bus) 

 [P]          load flow vector of bus real power mismatches 

 Qi          load flow bus i reactive power mismatch (+ is into bus) 

 [Q]         load flow vector of bus reactive power mismatches 

 Rj            the MW rating of line j 

 r           a real number used in PQ and PL interpolation 

 sn           area n load+loss MW / total generation MW 

 Sj           complex scalar line j injection current in per unit amps 

 [S ]          vector of n complex injection currents in per unit amps 

 [T ]          a temporary array of numbers 

 V           a complex number bus voltage in per unit volts (~1.00) 

 [V ]b         load flow base case complex bus voltages of the network 

 [V ]j         network complex bus voltages from 1 amp injection on line j 

 Vi          bus i temporary single precision complex incremental voltage 



 xii 

 [V ]         vector of temporary single precision complex incr. voltages 

 VAi          bus i double precision voltage angle as a complex number 

 VMi          bus i real voltage magnitude; double precision in new matrix 

 [VM]        vector of real incremental voltage magnitudes 

 [VM]         vector of real number bus voltage magnitudes 

 VMi         bus i real incremental voltage magnitude 

 Vi          bus i real voltage angle 

 Vi         bus i real incremental voltage angle 

 [V]        vector of real incremental voltage angles 

 Vf j           ‘from’ complex bus voltage for 1 amp injection 

 Vt j           ‘to’ complex bus voltage for 1 amp injection 

 Vf b j            line j ‘from’ bus base case load flow complex voltage 

 Vt b j            line j ‘to’ bus base case load flow complex voltage 

 Vf i j           line i ‘from’ complex bus voltage for 1 amp injection on line j 

 Vt i j           line i  ‘to’ complex bus voltage for 1 amp injection on line j 

 
j            random variable on j , line j probability-MW flows 

 xmax          the maximum value of MW that will occur on real x 

 xoj          the MaxGen (base case) line j MW real power flow 

 [Y ]          complex admittance matrix of the total network less shunts 

 [Ys]          complex admittance matrix of the total network with shunts 

 Yj           complex in-line admittance of line j to be removed 
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Chapter 1 

Introduction 

Background 

    Large interconnected electric power systems are carefully planned to provide 

very reliable electric service.  Random outages of generators and transmission lines 

are normal events, and wide area blackouts are not expected to occur due to these 

random outages.  Therefore, the simple line outages resulting in the recurring 

cascading blackouts recently in the western United States (WSCC region) were 

neither planned nor expected.  These blackouts are an example of unacceptable 

reliability of a large interconnected system as reported by the DOE [100]. 

    The blackouts in the WSCC were due partially to a lack of sufficient 

computational tools to analyze the many possible configurations that a large system 

may encounter.  The planning engineers of the WSCC stated that they had never 

simulated or modeled the specific conditions that led to the recent blackouts of that 

system.  A large system requires the testing of an immense number of configurations.  

Many of these failure configurations will lead to significant loss of load, but they are 

never discovered and tested because far too many configurations exist to explicitly 

test all of them. 

    A specific example illustrates this point.  Recently a study was run on a large 

system in the southeastern United States [6].  An exhaustive analysis of this system 

for all possible line and generator outage states would require an extremely large 

number of configurations to be examined.  Because the complete enumeration of 

such a large number of configurations is impossible to perform, two approaches are 

used today to solve the composite generation-transmission system reliability problem 

[7].  The two approaches are analytical enumeration and Monte Carlo simulation.  

Each of these approaches takes a representative sample of the total problem with the 
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objective of arriving at a solution close to the totally exhaustive solution of all 

possible configurations.  In [6], analytical enumeration was used to simulate over 2.5 

million configurations.  A computer run time of ~60 hours for this example was the 

overriding solution constraint.  To keep the computer run time reasonable, the 

authors limited the problem to be studied to no more than two generators outaged at a 

time. 

    The system in [6] has 570 generators.  Assuming an extremely low generator 

forced outage rate (FOR) of only 2% results in about 11 generators in a failure state 

on the average.  The assumption of two generators out of service is not realistic.  

Furthermore, the total probability space of all combinations of two generators out of 

service from a total of 570 generators is only .0008 (using an FOR of .02)
1
. 

    Limiting this study to two generators out of service misses 99.9% of the 

problem to be studied!  The majority of generation outage configurations causing line 

overloads in the network have not been tested.  The approach taken in [6] is useful 

for operational planning purposes in which the states of generators out of service are 

known in advance and put into the model.  Beyond one or two weeks into the future, 

the status of generators is not known, and the study results in [6] are incomplete. 

    Operating experience shows that many large scale system disturbances are 

associated with clusters of generators in a configuration causing large power shifts.  

These power shifts change line flows throughout the network, causing lines to 

overload within the interiors of the load areas.  Some models [5,26,31,62,87] 

incorrectly assume that only the tie lines are the limiting transmission constraints. 

    The probability of any one set of generators being out of service is small.  

Collectively, the total probability of all of them is significant.  The approach taken in 

the probabilistic load flow (PLF) model presented in this dissertation allows all of the 

                                                 
1
 .98

570
 +570.02.98

569
 +.5570569.02

2
.98

568
 = .0008 of the total probability failure space 
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transmission lines in a large network to be tested for probabilistic overload for all of 

the configurations of generators being out of service or derated.  The PLF model 

presented in this dissertation also includes an efficient means for outaging any 

number of one or more lines concurrently with all the generators being outaged. 

 

Dissertation Objectives And Achievements 

    The purpose of this dissertation is to present a new probabilistic load flow 

(PLF) approach to solving the composite generation-transmission reliability problem 

for large interconnected electric power systems (300 generators, 5000 buses).  The 

total set of all combinations of all generators outaged is calculated along with the 

probabilistic line flows (due to the outages) using a new recursive
1
 convolution 

technique.  A new efficient line outaging technique allows the statistically significant 

transmission line outage configurations to also be modeled.  To accomplish this, new 

methods not previously appearing in the literature are used. 

 

1. A new convolution of line flow states method is presented in Chapter 8 in which 

all combinations of random generator outage possibilities are modeled.  The new 

approach allows the total probability space of all independent generation outage 

states to be modeled and mapped to the transmission system as probabilistic 

incremental line flow states in the form of cumulative distributions [1].  Since the 

coverage of all generation outage configurations is exhaustive (complete), a 

fundamental deficiency of methods relying on enumeration and sampling is 

solved [3].  The current industry approach to the determination of probabilistic 

line flow states based on enumeration techniques is easily shown to result in 

incomplete solutions (Chapters 1 and 2) because of the enormous number of 

significant generation outage configurations. 

                                                 
1
 Cumulative probability distributions are updated as each random generator is added to the network. 
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2. A new mathematical convolution method based on piecewise-quadratic (PQ) 

functions is presented in Chapter 3.  The PQ mathematical convolution error is 

user controllable and can be kept at sufficiently low levels to provide accurate 

probabilistic line flows in Chapter 8.  The new PQ convolution methods in [1,34] 

have lower error than other methods such as piecewise-linear [48], cumulants 

[47], and Mixture of Normals Approximation [44] based on tests performed in 

[34].  The line overload problem in this dissertation requires the right hand tails
1
 

of the cumulative distribution functions to have low computational error.  

Characteristic functions such as MONA, Fourier Series, and Cumulants produce 

too much error in their right hand tails to be applicable to this problem. 

  

3. A new mathematical method of modeling load shedding through the use of 

‘virtual’ generators at load buses is presented in Chapters 7 - 10.  The virtual 

generation is a means of selective load shedding within the network.  Linear 

combinations of distribution factors using superposition of both real and virtual 

generators allow a large number of combinations of generators and load buses to 

be tested for optimal load shedding. 

  

4. A new computationally efficient method for outaging many transmission lines 

simultaneously is presented in Chapter 9 and in [55].  Computation speed is 

orders of magnitude faster than direct load flow enumeration.  This line outage 

model is an integral part of the composite generation-transmission outage 

configuration model. 

  

                                                                                                                                           
 
1
 The line flow cumulative distributions in this dissertation are monotone decreasing and measure the 

probability of a transmission line being loaded greater than x MW.  Most line overloads occur to the far 

right in this function in what is referred to as the tail of the function (ref. Figure 4.3 on page 74). 
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5. A new load flow solution technique is presented in Chapter 6 using two solution 

matrices simultaneously in place of a Jacobian matrix.  A new form of bus 

voltage representation is used that allows polar to rectangular operations without 

the need for trigonometric functions. 

  

6. The total PLF solution approach presented here using all of the above innovations 

together as an integrated package is new.  The new approach models a greater 

number of outage configurations for a much larger network (5000 buses) than is 

presently possible with enumeration methods.  The new solution procedure 

requires a series of steps (Chapters 4 and 10) necessary to solve the composite 

generation-transmission problem.  In summary, these steps are: 1) set up a 

maximum load and generation load flow; 2) outage each generator and calculate 

all incremental line flows; 3) convolve the incremental line flow states to produce 

probabilistic line flow distributions; and 4) perform load and generation 

reductions to remove line overloads.  Load shedding statistics are recorded and 

presented as a report. 

 

    The new PLF network reliability analysis solution presented here models all 

the combinations of generation outage states and the majority of significant line 

outage states.  A real power model is used to calculate the combinatorial transmission 

line flows rather than an explicit electrical model.  The use of linear line factors and 

convolution techniques provides a means for achieving the most complete 

computational coverage of the probability space of generator and line outages in the 

industry when compared with other models presently in use. 
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Chapter 2 

Present State Of The Art In The Industry 
 

    The 1965 blackout of New York City made the United States citizens and 

government aware of our reliance on electricity and the unpleasant consequences of 

an extended outage.  Shortly after that blackout, regional councils were formed to 

insure a high level of reliability is maintained.  Recent actions are opening up electric 

systems to competition, and reliability is one of the top three technological concerns 

of the electric power industry, according to a recent IEEE Power Engineering Society 

survey [4].  The Western Systems Coordinating Council recent blackouts indicate the 

need to develop new tools to better measure power system reliability. 

    This dissertation is an advancement in the analysis and measurement of the 

reliability of large interconnected electric power systems as shown in Figure 2.2.  A 

review of the tools presently used by the electric utility industry to measure the 

reliability of large electric power systems is discussed.  The following presentation is 

a light discussion of the author’s personal experiences and comments on the 

computer programs presently available for calculating electric power system 

reliability. 

 

Personal Experiences 

    In the early 1970’s I met with Dr. A. D. Patton of Texas A&M University to 

discuss new computational simulation methods for electric power systems.  At that 

time large system transmission planning was a deterministic process.  I wanted a 

better way to measure the reliability benefits associated with future transmission lines 

and generators being studied.  Dr. Patton said a probabilistic model could solve this 

problem.  His most recent publication [53] at that time modeled generation but not 
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transmission reliability.  Large network probabilistic analysis software was not 

available, although papers were beginning to appear [48-54] and [92,93].  Multi-area 

generation models were also being discussed [31].  The simplified multi-area models 

did not have the level of transmission system detail I was seeking. 

    Several years pass in which deterministic models dominated the planning 

processes at the City of Austin Electric Utility Department (EUD).  In the late 1970’s 

a consultant used a new probabilistic production costing model based on Booth’s new 

method [48,54] to assess Austin’s generation options.  The consultant proudly pointed 

out the strengths of their model and the deficiencies of the deterministic model I was 

using.  Not to be outdone, the EUD’s in-house production costing model was 

rewritten using optimum unit commitment, optimum incremental hourly dispatch, 

and Monte Carlo methods to model generator failure states.  This program called 

GENH was better than the consultant’s, and we learned a lot about the Austin system 

with GENH.  However, GENH had no provisions for modeling transmission system 

constraints or line outages. 

    In 1985 I had an opportunity to specify and purchase the best computer 

hardware and software available for generation, transmission, and distribution 

planning.  Hundreds of thousands of dollars were spent to insure we had the best tools 

the industry had to offer (PROMOD, PSSE, CADPAD).  Even after all this hardware 

and software was installed and running, I still could not answer the original question I 

had asked Dr. Patton a decade earlier. 

    In the late 1980’s the Electric Reliability Council of Texas (ERCOT) became 

interested in studying the effects of transmission constraints on the reliability of 

generation supply.  A single area
1
 Utility Consulting Service (UCS) model was used

2
 

to evaluate the reliability of generation in ERCOT.  Several candidate programs were 

                                                 
1
 Single area means no transmission system is modeled. 

2
 The single area UCS model is still in use as an ERCOT measure of generation reliability. 
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reviewed for use in modeling transmission constraints in ERCOT.  Programs under 

consideration plus others that appeared later include: AREP, CONFTRA, COMREL, 

CREAM, ENPRO, GATOR, GRIP, MAREL, MAPS, MARS, MECORE, MEXICO, 

MULTISYM, NARP, PROCOSE, PROMOD (multi area), RECS, SICRET, SYREL, 

TRELSS, and others.  None of these model the total probability space of generation 

and transmission failure states. 

   The GRIP program developed by Singh and Patton was reviewed first.  It has a 

transmission link model resembling the spokes of a wagon wheel.  The one area 

under study is the hub or center of the wheel, and the other utilities are at the end of 

the radial spokes.  The spokes are transmission links that are assigned capacity and 

availability states.  ERCOT considered using the GRIP program and decided not to 

use it because the ERCOT system resembles enclosed loops rather than radial spokes.  

One large ERCOT utility uses the GRIP program to study its own service area 

reliability, which is the center hub utility, and radial ties are made to the other major 

control areas.  This arrangement gives no information about transmission limitations 

within the remote areas outside the hub or within the hub area itself.  It does allow 

power import constraints to be specified. 

    Another program called MAREL by Power Technologies, Inc. uses a more 

general radial model than GRIP in which radial links can be taken off any node in the 

network.  However, MAREL has the same limitation as GRIP in that it does not 

model loops or loop flows.  ERCOT felt strongly that modeling loop flows is a 

necessity.  Dr. Patton proposed a three area loop model, but it was also believed to be 

too simplistic. 

    To overcome these shortcomings, Drs. Patton and Singh were hired by 

ERCOT to develop a new program called NARP [5,62].  The NARP network model 

for ERCOT is an 8 node 13 link model of the ERCOT transmission system as shown 
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in Figure 2.1.  Each node is a major load area such as Austin, Houston, Dallas, San 

Antonio, etc. and each node contains the generators physically local to that area 

(node).  Network flows are calculated using a DC load flow which can model loops.  

Monte Carlo is used to randomly outage generators.  A linear program optimally 

performs load shedding when link overloads occur.  The links can be assigned 

capacity and probability states.  The NARP program is easy to run, but the original 

link model shown in Figure 2.1 was difficult to develop and calibrate. 

 

 

      WTU                          TU 

 

 

             COA     LCRA         TMPA 

                               BEPC 

 

                   CPS                  HLP 

                                      STP 

       CPL  COB 

      STEC-MEC 

 

Figure 2.1  The NARP Network Model For ERCOT 

    No software was delivered with the NARP program to create the NARP 13 

transmission link elements shown in Figure 2.1.  The link model had to be manually 

‘tuned’ to get the best agreement with full AC
1
 network load flow on incremental tie 

flows between areas.  This tuning effort was difficult and time consuming and has not 

                                                 
1
 AC means complex circuit impedances, line currents, and line powers are modeled. 
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been repeated since the initial equivalent was developed.  In spite of these 

limitations, the NARP program was and still is a state of the art program in its ability 

to impose transmission limitations on the reliability of the generation supply.  A more 

detailed transmission link model for NARP using what is called an REI model has 

recently been published [62], but this model has not been used to perform ERCOT 

studies. 

    When the NARP program was put into use to study the ERCOT system, an 

undesirable characteristic of Monte Carlo was discovered.  If the ERCOT generation 

capacity is increased to 30% above annual peak ERCOT load, the NARP program has 

difficulty finding failure configurations using the Monte Carlo random draws to 

determine outaged generators.  Some NARP runs required a week of execution time 

on a 486DX 50 MHz PC to find only 100 events with loss of load.  A week of 

computer execution time for the ERCOT system in Figure 2.1 is typically 100,000 

repeat simulations on a single year in which each day is tested for the peak daily load 

condition.  These very long computer run times prevent a meaningful study from 

being performed because only a few questions can be studied and answered.  I 

learned from this experience and my earlier experience with the GENH production 

costing program that Monte Carlo is better suited to production costing than 

reliability analysis.  In general, the Monte Carlo method increases in computer run 

time and decreases in accuracy in proportion to generation reliability.  This means 

that an engineer performing a study in which the system is made increasingly more 

reliable will experience longer and longer computer run times.  In contrast to this 

problem, the convolution method used by the PLF model improves in accuracy as the 

system is made more reliable and the solution run time decreases.  The very long run 

times required for Monte Carlo effectively cripple the NARP program in the final 

stages of a study.  Completing a reliability study in a reasonable amount of time using 

the Monte Carlo method may be very difficult. 
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Capability Of Presently Available Computer Programs 

    Figure 2.2 shows how the PLF model by Preston, Baughman, and Grady in   

[1] compares with other models concerning the level of detail in modeling both 

generation and transmission systems as an integrated system. 

 

none       a few selected          Monte Carlo        all configurations 

Generation Detail 

Figure 2.2  Transmission Detail Versus Generation Detail 

 

    Figure 2.2 shows a tradeoff between program complexity in generation and 

transmission representation of detail both electrically and probabilistically.  Programs 

with very detailed probabilistic transmission analysis are usually incomplete in the 

treatment of random generator outages (TRELSS).  The opposite is also true.  

Programs that have a complete treatment of the random outage of generators have a 

highly reduced transmission network (MAREL).  In all these programs the computer 

run time is long.  Compromises are made to keep computer execution times 

reasonable.  This section discusses the compromises that have been made in the 

design of these programs. 

 

 

       TRELSS              not yet achieved 

   PSSE 

        RECS 

                CREAM  

       SYREL     complex 

             COMREL 

 

         simple 

                 NARP       MAREL 

                 ENPRO      GRIP 

  trivial                     PROMOD 

 

              GENH 

 PLF 
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Discussion: 

    Probabilistic programs with detailed transmission representation [6,24] are 

RECS, SYREL, CREAM, and TRELSS.  These programs explicitly enumerate 

selected configurations of randomly outaged lines and generators.  An OPF and/or an 

LP is used to take corrective actions to minimize the loss of load.  Configurations to 

be enumerated are selected based on a screening process of probability and likelihood 

of having a transmission constraint.  The earlier EPRI transmission reliability 

evaluation program called SYREL is a 150 bus network model.  EPRI replaced it 

with the TRELSS program [24] which has a network capability of approximately 

2000 buses.  In [6] an example is given in which a 2182 bus, 3791 line, 8 area, 570 

generator system required ~60 hours of execution time to enumerate 2,534,336 

failure configurations of any two generators and/or lines out of service 

simultaneously.  This example illustrates how the computer run time is a limiting 

factor in how deep the contingencies are allowed to proceed in a TRELSS run.  The 

total number of configurations for this problem exceeds 2
(570+3791)

10
1300

.  On top of 

this number of generation and line outage configurations, each overloaded line has a 

unique set of generator outage and line outage configurations causing the line 

overloads.  Enumeration sampling will not be able to cover this space adequately.  

Even with 62 hours of computer run time, [6] did not adequately measure the 

reliability of that system since only two levels of generators were outaged. 

    The CREAM program [17] is similar to TRELSS but uses Monte Carlo to 

select line and generator configurations rather than enumeration.  It has a smaller 

network of 500 buses maximum, which is too small to model the full ERCOT system.  

There is no simple way in the CREAM program to create a reduced ERCOT 

transmission model and retain all the electrical characteristics of the full network.  

The CREAM and TRELSS programs have not been implemented and tested for 

ERCOT, although individual utilities in ERCOT have tested these models. 
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    The ERCOT experience with NARP indicates that many generators must be 

outaged simultaneously to create loss of load conditions to measure both the 

reliability of generation and to encounter transmission constraints in the small NARP 

equivalent transmission model
1
.  If this is true, then the TRELSS program is skipping 

over a significant amount of the generation outage events that cause load shedding. 

    Probabilistic programs with exhaustive modeling of generation outage states 

and limited transmission models are MAREL, GRIP, and PROMOD.  PROMOD is 

not designed to calculate reliability, but it does model all generation failure 

configurations using the Booth-Baleriaux method [48].  The GRIP program partitions 

annual load into weekly ELDC sets and uses Booth-Baleriaux, or mathematics similar 

to Booth- Baleriaux, to perform the convolution of generation states.  The GRIP 

multi-area transmission model resembles a wagon wheel in which one central area 

under study is surrounded by other areas connected radially to the central area.  Each 

area has generators that fail randomly. 

   The NARP program uses a transmission equivalent model that treats all the 

parallel lines connecting adjacent areas as a single lumped equivalent.  Figure 2.1 

shows the NARP equivalent link model developed for ERCOT.  Each area is a node.  

Nodes are connected by single lumped equivalent lines.  The power flow on each line 

in the NARP equivalent is determined by a DC load flow.  Overloaded lines are 

unloaded by optimal load shedding using an LP.  This simple model has intuitive 

appeal, as evidenced by the number of papers using this model [3,5,25,26,62].  

However, no papers have been published showing a procedure for calculating a 

reduced network’s set of impedances, capacities, and probability states. 

    The REI equivalent method is presented in [62] as an advanced reduced 

network model with the details of constructing the REI equivalent given in [87].   

                                                 
1
 NARP results show ERCOT transmission loss of load expectation highest for approximately 10 to 20 

generators simultaneously in failure states for the ~300 ERCOT generators. 
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Figure 2.3 shows the connectivity of the REI between power plants and interarea tie 

lines.  However, the REI in [87] is a deterministic equivalent.  There is no provision 

for handling line outages and their effect on system reliability.  The REI model in 

[62] presumes that monitoring tie lines between areas is sufficient to capture 

transmission constraints.  Actual ERCOT load flow studies show that this is almost 

never the case.  Usually the limiting lines are internal to each system, and these 

internal lines restrict generation. 

 

       Area 1 Power Plants          Area 2 Power Plants 

 

 

 

 

 

    REI Equivalents              Tie Lines 

Figure 2.3  REI Tie and Equivalent Lines Between Two Areas 

 

    A problem with equivalent networks is their inability to explicitly model real 

transmission line failures.  The REI model must be completely rebuilt for each 

transmission line(s) outaged in the real network.  In [62] there was never any 

intention of using a different equivalent for each full AC network transmission outage 

configuration.  The thought in [62] is to give the tie lines a set of availability states 

and capacities to represent the full AC network’s transmission constraints.  

Unfortunately, the theory to do this has not been developed.  The literature is 

completely lacking on the theory needed to develop a composite generation-

transmission probabilistic equivalent network.  This explains why the group of 
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ERCOT engineers had to struggle in their effort to construct an equivalent network 

model for the NARP program.  The theory was weak in this area, and this caused 

them to waste time using simple manual adjustments to get better agreement between 

the full AC load flow and the equivalent.  The author spent a great amount of 

personal time testing and tuning this model.  The REI was proposed by Dr. Patton as 

an improved network model but was never implemented.  Whether the REI model 

would have been easy to create and produce useful results is unknown. 

    NARP uses the Monte Carlo sampling technique which has an improvement 

in solution accuracy proportional to N  where N is the number of simulations.  In 

[17] the authors illustrate this slow improvement in accuracy by stating “...a system 

LOLP of .001 with an uncertainty of 30% would require ten thousand samplings; the 

reduction of this uncertainty to 3% would require a sample size of one million.”  

Gaining one more digit accuracy requires a hundredfold increase in execution time.  

Research on improving the rate of convergence for Monte Carlo continues, and an 

example of this is described in [18]. 

    The PSSE program in Figure 2.2 refers to the original PTI load flow programs 

purchased by the EUD in 1985.  They have a high level of detail in the transmission 

models including transient stability and OPF.  The original PSSE programs have been 

deterministic models for years.  Possibly PTI held off development of a probabilistic 

load flow because they already had a composite G-T program in MAREL.  The recent 

introduction of the General Electric MAPS program and the EPRI TRELSS program 

may have changed PTI’s thinking on probabilistic load flow.  Recently PTI has 

offered a two area probabilistic load flow based on enumeration of line outages, and 

another new probabilistic load flow has recently been introduced. 

    The ENPRO program was purchased by the EUD to perform detailed 

chronological production costing.  ENPRO uses the Monte Carlo method.  It has a 
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limited transmission model in which a few lines can be monitored for overload.  

ENPRO is similar to PROMOD in not being able to model generation reliability. 

    The Booth-Baleriaux method Dr. Booth of Australia developed [48,49,54] 

works very well in commercially available production costing programs (PROMOD).  

Booth-Baleriaux used in production costing is usually applied to just one load area 

under study.  This solution does not measure generation reliability at all.  Without the 

total set of generators in a study, the information on the improvement in reliability 

from the interconnections [13] is not calculated.  To correct this deficiency in the 

EUD studies, a multi-area version of the PROMOD program was purchased by the 

EUD with the thought of using this one program to measure overall reliability of 

generation supply as well as perform production costing.  This effort failed when it 

was discovered that the multi-area model used expected (average) tie line flows 

rather than distributions.  The tie flows between areas were identified as being 

approximations to the actual set of probabilistic flows.  The specific configurations of 

generation and load that would have caused tie flow overloads were not calculated in 

this approach.  The use of the multi-area PROMOD program to measure the City of 

Austin generation reliability was dropped. 

    Other analytical probabilistic methods [35,38,40-44,47] not shown in Figure 

2.2 have been developed for use in production costing programs.  These execute very 

quickly but have a rather large amount of error in the tails of the probabilistic 

distribution functions where the reliability information is contained.  Some methods 

such as Fourier [40] and cumulants [41-43,46,47] can produce negative probabilities 

in the tails of the distributions.  The cumulant method is very fast and is used in 

production costing programs in which the expected value of the function is in the 

range of interest [35-47] for calculating average energies of each generator.  

However, the reliability information is in the distribution function’s tails where the 

function has extremely small values just barely greater than zero.  In this region there 
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can be much relative error.  Any functional ringing will introduce extremely high 

error in the calculation of reliability.  The large error in this region when using 

cumulants has led to a widespread belief that production costing programs are not 

capable of calculating reliability, since most of them use a fast convolution scheme 

such as cumulants. 

    The Booth-Baleriaux method can have good accuracy in both production 

costing and reliability, as shown by Preston and Grady in [34], however, it may be a 

little slower to execute than the analytical methods.  In this dissertation, the Booth-

Baleriaux model is improved using the PQ convolution procedure.  The PQ 

convolution method is extended to include the calculation of probabilistic line flow 

distributions.  Although PQ does not appear to the fastest solution approach, when 

overall accuracy is taken into account, the author believes it is the fastest in the 

industry.  The fact that PLF can model large systems in reasonable computation times 

is evidence supporting this belief. 
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 Chapter 3 

Mathematical Concepts 

 
    The composite generation-transmission analysis problem requires the 

generation outage configurations be examined more completely than enumeration 

methods are capable of providing.  A convolution of states approach, using a 

recursive technique
1
, is preferred because it allows for coverage of the entire 

probability space of all generation outage events.  This approach, which is widely 

used in modeling probabilistic generation outages in [35,38,40-44,47], is extended in 

this dissertation to include the transmission system. 

    The mathematical theory presented in this chapter starts with basic concepts 

and ends with a presentation of the piecewise quadratic (PQ) convolution method.  

Papoulis [98] and Stark [99] suggest the user avoid a direct convolution process (like 

PQ) because it is considered by them as computationally intensive (too slow).  Their 

recommendation is to transform the problem into a form in which the convolution is 

simplified such as Fourier series [40] or cumulants [41-43,46,47].  Mixture of 

normals approximation [34,38,44] is another popular approach.  However, experience 

shows these methods produce too much error in the tails of the probability 

distributions of the line flows.  The PQ convolution method in this dissertation allows 

the convolution process to be performed with a high degree of accuracy for hundreds 

of generators whose output power states are random variables.  The piecewise linear 

(PL) method [34,48,49,54] is presented as an introduction to PQ because of its 

simplicity and similarity to the PQ method, although the PL method also is found to 

have too much solution error to be used for calculating line flows. 

 

                                                 
1
 Recursive means each distribution is built on the preceding distribution rather than by binomial 

theorem expansions and the subsequent merging of tables of data [52]. 
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Basic Concepts 

    Electric generators are complex machines that typically have a probability of 

being in a state of failure of 5% to 10%.  When they do operate, their maximum 

output capacity is a variable depending on ambient temperature, fuel heat content, 

amount of excess air used, air and water environmental constraints, and other 

operating conditions.  The exact maximum capacity of each generator is uncertain.  

Most power plants have internal redundancy of components that wear out or fail 

frequently.  The mill for grinding coal to a powder is an example.  A generator may 

have several mills and a standby.  When one fails, the maximum capacity of the plant 

may be reduced.  This type of outage happens often enough to create a cluster of 

capacity states around a derated output MW level for the coal plant.  Figure 3.1 shows 

what the distribution density of capacity states f(x) might look like for a typical 

generator.  The maximum capacity (C) has uncertainty.  The clustering of points 

around one or more frequently occurring derated (D) states is also shown.  Since a 

generator will be taken completely off line for very severe problems, a gap between 

the operational states and the outage state is created, as shown in Figure 3.1.  The 

probability of running a severely damaged generator at very low MW levels is 0. 

 

 

 

     f(x) 

         out of service              operating 

                                       x  MW 

        0                     D     C 

Figure 3.1  Maximum Output Capacity of a Generator as a Random Variable 
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    An example is given to show how the distribution of capacity states of two 

generators with continuous distributions of densities can be convolved together to 

form a new function of the total probability of generation capacity being available.  

Figure 3.2 and Equations 3.1 and 3.2 show generator 1 with a uniform distribution 

from 0 to 1 MW.  Generator 2 has an exponential distribution from 0 to 1 MW.  The 

capacities of the two generators are assumed to be independent, which is required to 

perform the convolution process shown in this example. 

 

 

     f1(x1)                   f2(x2) 

                x1  MW                 x2  MW 

         0    1                0     1 

Figure 3.2  Probability Density Functions For Two Generator Example Problem 

 

The figures above are described by  

              f1(x1) = u(x1)  u(x11)                (3.1) 

and 

              f2(x2) = e
x2(e1)

1
[u(x2)  u(x21)]          (3.2) 

where u(x) is a unit step at x = 0. 

 

Let  x = x1 + x2.  The convolution of generation states is performed in Equation 3.3 

and successive steps as 

 

                      

  

  xx
2 

               (f1f2)(x)  =      f1(x1)f2(x2)dx1 dx2 ,       (3.3) 
                        
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then 

           
 

 
  xx

2 
    (f1f2)(x)  =      [u(x1)u(x11)]  [e

x2(e1)
1

{u(x2)u(x21)}] dx1  dx2 , 
              

 

and 

           

  

    (f1f2)(x)  =   e
x2(e1)

1
 [u(x2)u(x21)]  [u(xx2)u(xx21)]  (xx2) dx2  . 

           

 

    The functions being integrated are discontinuous, which creates two 

overlapping regions as shown in Figure 3.3. 

 

 

 

 

          x-1  0  x   1              0  x-1 1   x 

Figure 3.3  Convolution Intervals For Two Generator Example 

 

    These regions are integrated as two separate integrals as shown in (3.4). 

 
              

x
  

       (f1f2)(x)  =   e
x2(e1)

1 
 (xx2) dx2     for  0  x  1    

             0  
 
              

1  
              e

x2(e1)
1 
 (xx2) dx2     for  1  x  2      (3.4) 

             x-1 

 

    The final solution is 

          (f1f2)(x)  =  (e
x
  1)(e  1)

1
   for  0  x  1  

                 (e  e
x1

)(e  1)
1

  for  1  x  2  .     (3.5) 
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    The convolved generator states for this example are shown in Figure 3.4.   

 

                1 

              f(x) 

               0 

                 0     1    2  MW         

 

Figure 3.4  Distribution f(x) For Two Generator Example 

 

    The continuous distributions in the two generator example can be represented 

as a set of discrete states as shown in Figure 3.5 and Table 3.1.  This example will 

show that a discrete state model can be used instead of continuous states for 

calculating the cumulative probability generation capacity outaged will exceed x 

MW. 

 

 

     f1(x1)                   f2(x2) 

                x1  MW                 x2  MW 

         0    1                0     1 

Figure 3.5  Discrete Generator States For Two Generator Example Problem 

 

Table 3.1  Generator Discrete State Values For Figure 3.5 

x1 gen 1 state prob x2 gen 2 state prob 

.125 .25 .125 .1653 

.375 .25 .375 .2123 

.625 .25 .625 .2725 

.875 .25 .875 .3499 
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    Each state of each generator is combined once with each of the states of the 

other generator by summing x MW and multiplying probabilities.  This produces 16 

state probabilities.  Many of these states have the same MW.  The probabilities of 

equal MW states are summed.  Table 3.2 shows these combined state probabilities.  

The combined discrete states are a convolution of the two discrete state generators.  

The last two columns of Table 3.2 show the cumulative probability generation 

capacity available is less than or equal to x MW for the discrete states and for the 

continuous distribution shown in Figure 3.4. 

 

Table 3.2  Discrete And Continuous Probability Generation Capacity G x MW 

x MW discrete state prob discrete Pr[rvGx] continu Pr[rvGx] 

.00 .000 .000 .000 

.25 .041325 .041325 .0198 

.50 .0944 .135725 .08655 

.75 .162525 .29825 .2136 

1.00 .25 .54825 .418 

1.25 .208675 .757 .6482 

1.50 .1556 .9125 .8315 

1.75 .087475 1.00 .9544 

2.00 .000 1.00 1.000 

 

    Figure 3.6 on the next page shows the graphs of the last two columns in Table 

3.2.  The curves in Figure 3.6 are the discrete and continuous distributions for the 

probability of total generation available being less than or equal to x MW.   
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Figure 3.6  Discrete And Continuous Pr[generation  x] For Two Generator Example 

 

    A more useful format is the probability generation capacity outaged exceeds x 

MW.  This results in a monotone decreasing function as shown in Figure 3.7 below.  

Figure 3.7 is the same graph as Figure 3.6 except the x axis is reversed. 
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Figure 3.7  Discrete And Continuous Pr[generation outaged  x]  
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    The next example is an introduction to the idea that a transmission constraint 

will cause a shift in the generation states of a generator.  The four discrete states for 

generator 1 in the previous example are now limited by a transmission line with a 

maximum capacity of .5 MW as shown in Figure 3.8. 

 

                    .5 MW max. 

            G1 

 

 Figure 3.8  One Generator Example With A .5 MW Transmission Constraint 

 

    This transmission constraint limits the random variable generation to a 

maximum of .5 MW.  The generator output power from .5  x  1 MW is shifted 

downward to x = .5 MW.  An impulse with area of .5 appears at x = .5, as shown in 

Figure 3.9 for both the continuous and discrete generator state models. 

                     .5 

 

                  .25   

                f(x)             

                  

                   0     1 MW   

Figure 3.9  Distribution Of  f(x) With A Transmission Constraint 

 

    This example illustrates the basic approach taken in this dissertation.   

Whenever line flows exceed line capacity, generation is reduced until the overloaded 

lines are no longer overloaded.  Probabilistic line flows are adjusted in conjunction 

with the most offending generators causing the lines to be overloaded.  This reduction 

in generation (and load) is identified as being caused by a transmission constraint. 
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Discrete States 

    The generators in the example just described have continuous distributions.  

The industry practice is to describe individual generators with discrete states at the 

cluster points C and D (shown in Figure 3.1) rather than as continuous functions.  

There is a good reason for this.  Generators usually operate for long periods between 

major outages.  The scant amount of statistical data available for individual 

generators is insufficient information for developing continuous distributions.  Two 

state discrete generator states are the norm unless a generator clearly has derated 

states that are likely to occur.  A three state generator is common for this case.  The 

preparation of generator outage data is described in the North American Electric 

Reliability Council (NERC) GADS.  Appendix C gives the definitions of GADS 

terms used by NERC.  Table 3.3 shows the definition for the set of Gk (generator k) 

success, failure, and partial failure states. 

 

Table 3.3  Two State and Three State Definitions of Gk 

Two State Model: 

Probability Output Power - MW Status 

1EFORk 0 up 

EFORk Ck down 

 

Three State Model: 

Probability Output Power - MW Status 

1FORkDFORk 0 up 

DFORk  Ck Dk derated 

FORk Ck down 
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    In Table 3.3, EFORk is an equivalent forced outage rate (a probability) of Ck 

megawatts (being outaged) and is used only in the two state model.  FORk and 

DFORk are the three state forced outage and derated forced outage rates, respectively 

(Markov state probabilities), of Ck and Dk megawatts.  These states are calculated by 

collecting data for the  and  (failure and repair) rates described in the next section.  

Additional information on the calculations of EFOR, FOR, and DFOR is given in 

Appendix C
1
.  Note that Dk in Table 3.3 and Figure 3.14 is the MW derating, whereas 

in Figure 3.1, D is shown as the derated generator output, i.e. Dk=Ck-D. 

 

Markov Process 

    After a generator i is outaged or is in a state of failure, there is an average 

repair time Tr to put it back on line.  The repair rate (number per year) is i = Tr
1

.  

Likewise, a generator that has been repaired is expected to run for an average time to 

failure of Tf .  The rate of failures per year is i = Tf
1

.  Sometimes a generator will 

fail to a derated or partial output power state.  That case is discussed later.  Figure 

3.10 is an illustration showing the two generator states of fully available and outaged. 

 

 

                     Up   P1 = Pr (unit i is available) 

 

 

                     i   i   (repair/fail transition rates) 

 

 

                     Dn   P0 = Pr (unit i is down or outaged) 

 

Figure 3.10  Two State Generator 

                                                 
1
 ERCOT represents generators  500 MW with three states and  500 MW as two states. 
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    The failure of any given generator, transmission line, or transformer in an 

interval of time 0 to t is often expressed according to Equation 3.6 in which i is the 

 

        Pr [generator i will fail] = ( 1  e
i t )  for  i>0  t0        (3.6) 

 

average number of failures per period.  If generator i is not in a state of failure, the 

probability generator i will fail increases with time in accordance with (3.6).  Given 

enough time, generator i will eventually fail.  The exponential distribution is 

discussed by Papoulis [98] and Stark [99].  Anders [36] gives several examples using 

the exponential distribution, and Patton [53] presents actual electric generator data 

justifying the appropriateness of the exponential distribution. 

    The probability of being in either the up or down state can be calculated as a 

stationary stochastic discrete-valued independent random variable process known as a 

Markov chain [36, 53, 98, 99].  Over a long time period, the number of transitions 

into and out of each state must be conserved.  This can be used to write steady state 

equations for the probability of being in a specific state.  For the two state generator, 

the number of transitions out of the up state is equal to the number of transitions into 

the up state.  In equation form this is P1i = P0i .  The other requirement is for 

P1+P0=1.  Solving these equations for up and down probabilities P1 and P0 yields 

 

                i                 i  
            P1 =      and     P0 =  .          (3.7) 
               i+i               i+i  
 

If the repair rate is high and the failure rate is low, then P1 >> P0 , which is desirable 

because it represents a very reliable generator.   
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    The three state model shown in Figure 3.11 is frequently used for larger 

generators with internal redundant components.  These internal components are 

usually designed to allow the generator to continue operation at reduced levels while 

the damaged components are being repaired. 

 

 

                     Up   P1 = Pr (full output) 

 

 

                    2   2 

 

 

               1   1  Pa   P2 = Pr (partial output) 

 

 

                    3   3 

 

 

                     Dn   P3 = Pr (no output) 

 

 

Figure 3.11  Three State Generator 

 

    Equation 3.8 shows the Markov steady state equation for calculating the 

probabilities P1, P2, and P3 of being in the up, derated, and down states, respectively, 

for the failure and repair rates of the three state generator in Figure 3.11. 

 

            1+2  2    1   P1    0 

             2   2+3  3   P2   =   0             (3.8) 

             1     1     1   P3     1 
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    A Markov steady state matrix can also be used to find the probabilities of 

each of the states of many generators.  Consider the three generators shown in Figure 

3.12.  Let each generator have a frequency of failure of one time per year (=1).  

Then let 1=9, 2=4, and 3=2.333.  The generator forced outage rates are .1, .2, and 

.3, respectively, when calculated using Equation 3.6 for P0 = Pr(of being outaged). 

 

 

         U               U                U 

 

 

       9   1            4   1           2.33   1 

 

 

        D               D                D 

 

       unit 1            unit 2             unit 3 

 

Figure 3.12  Three Two-State Generators In Combination Example 

 

    Eight combinations of states can be formed using these three generators.  Let 

UUU mean all three are up, UUD means units 1 and 2 are up and unit 3 is down, etc.  

Figure 3.13 shows the eight Markov states diagram for this example. 
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                       P1 

                       UUU 

                  2.33       9 

                         4 

 

 

 

              1           1       1 

          P2            P3            P5 

         UUD            UDU          DUU 

              9     2.33       9    2.33 

         4                            4 

 

 

         1                            1 

              1      1       1     1 

          P4            P6            P7 

         UDD            DUD          DDU 

 

            9          4            2.33 

 

 

                       1 

                   1         1 

                       P8 

                       DDD 

 

 

Figure 3.13  Markov State Space of Three Generators In Combination Example 

 

    From the above state space diagram, equations can be written around each 

state describing a steady state flow of failures and repairs at each state or node in 

Figure 3.13.  The state probabilities are P1, P2, ... P8.  Equation 3.9 is the Markov 

equation for this three generator system.  The relevance of this example is to illustrate 

one of the many ways this problem can be solved.  Use of the Markov process is the 

first example using this three generator system. 
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3 -2.3 -4 0 -9 0 0 0 P1 0 

-1 4.3 0 -4 0 -9 0 0 P2 0 

-1 0 6 -2.3 0 0 -9 0 P3 0 

0 -1 -1 7.3 0 0 0 -9 P4 0 

-1 0 0 0 11 -2.3 -4 0 P5 0 

0 -1 0 0 -1 12.3 0 -4 P6 0 

0 0 -1 0 -1 0 14 -2.3 P7 0 

1 1 1 1 1 1 1 1 P8 1 

 

Equation 3.9   Markov State Space of Three Generators In Combination Example 

 

    Solving Equation 3.9 produces P1=.504, P2=.216, P3=.126, P4=.054, P5=.056, 

P6=.024, P7=.014, and P8=.006.  This same solution result is also obtained by other 

means, as shown in Figures 3.15 (binary tree) and 3.16d (cumulative distribution). 

    The Markov equation approach is limited to relatively small problems.  We 

need to be able to readily solve problems with as many as 10
1000

 states.  Using the 

Markov for this large problem would require a matrix of 10
1000

 rows and 10
1000

 

columns, which is unlikely to ever be computationally feasible.  The Markov chain 

equation of discrete states is probably limited to no more than a few thousand 

variables at most, which is far too few for this power system reliability problem. 

    The use of cumulative distributions and recursion will allow the extremely 

large number of 10
1000

 states to be calculated efficiently.  The recursive process will 

update the cumulative distributions as each generator is added to the system.  These 

curves store the probability information of all the generators convolved through the 

last one convolved. This approach results in an approximately linear relationship 

between computational time and the number of randomly failing generators and lines. 

(3.9) = 
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Cumulative Distributions 

    Cumulative monotone decreasing functions (Figure 3.7) in this dissertation 

are used to describe probabilistic distributions rather than the traditional monotone 

increasing functions (Figure 3.6).  The computational mechanics of the piecewise 

quadratic (PQ) method result in low error in the far right hand tail of the cumulative 

distribution for a monotone decreasing function.  Distributions for extremely small 

probabilities (such as 10
-100

) are accurately calculated.  Interpolation error using the 

PQ method is discussed in this chapter. 

    In order to have confidence that the PQ method is producing correct and 

sufficiently accurate results, the PQ solutions are benchmarked with other methods 

such as a binary tree solution, a Markov chain solution, and an ‘exact solution’ 

developed by George Gross [44].  His ‘exact solution’ is limited to systems with 

generators having discrete integer real power states.  The ‘exact’ distribution 

FE(x) = Pr[generation outaged  x] is developed and is used to measure the 

interpolation error of the PQ distribution FG(x) = Pr[generation outaged  x]. 

 

Convolution Of Generator States Procedure 

    The process of recursive convolution for a generator with three discrete states 

into a continuous function F(x) is a process of scaling, shifting, and summing the 

F(x) = Pr[generation outaged  x] function.  Figure 3.14 shows the process steps 

pictorially for the three state generator in Table 3.3. 

    The convolution process on the function F(x) in Figure 3.14 is the sum of 

three partial states.  Only the derated and down states shift F(x) to the right, which 

requires a linear or quadratic interpolation.  The more likely to occur up state is not 

shifted.  It is scaled in place without interpolation, thereby reducing interpolation 

error.  If the up state were to be shifted, the convolution error would increase. 
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       (1DFORFOR)       no shift 

 

                      up state 

 

 

             DFOR   shift of Dk MW    sum 

 

   before Gk              derated state            after Gk 

 

 

              FOR   shift of Ck MW 

 

                     down state 

 

Figure 3.14  Pictorial Representation Of A 3-State Recursive Convolution Process 

 

Development of the FE(x) Distribution 

    A procedure is given for calculating FE(x), which is an almost exact solution 

to the probability that generation power outaged is greater than x MW.  Ck and Dk 

must be integer values
1
.  FE(x) is given in Equation 3.10 as 

 

     FE(x)  =  Pr [G1+ G2+ G3+...+ GNg (outaged MW) > x ]         (3.10) 

where Pr is the probability all generator Gk random outage configurations is > x MW. 

                                                 
1
 All the ERCOT generators have integer Ck and Dk . 
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    Equation 3.10 lacks the structure needed to describe how FE(x) is to be 

numerically calculated in the computer.  In practice, FE(x) is an array of discrete 

probabilities in one MW steps starting at x=0 MW and ranging up to xmax = Ck
k

Ng

 1
 . 

    The convolution process for calculating new FE(x)
+
 is shown in Equation 3.11 

for generator k and pictorially in Figure 3.14.  The FE(x)
+
 replace the FE(x) after all 

generator k states for all x=0...xmax have been calculated.  The real whole numbers x 

in a computer program are converted to integers and are used as the array index for 

FE(x).  Note that the grid spacing for FE(x) is 1 MW increments.  When setting up the 

computer program solution for FE(x), the initial values are FE(0) = 1 and FE(x>0) = 0.  

Note that in Equation 3.11 any FE(x < 0) = 1. 

 

    [FE(x)
+
  =  (1FORkDFORk)FE(x) 

               + DFORkFE(xDk) 

              + FORkFE(xCk) ]  x = 0, xmax , h=1         (3.11) 

 

    Equation 3.11 is a recursive convolution process illustrated in Figure 3.14.  

Appendix A.1 gives the derivation of Equation 3.11.  At any intermediate point in the 

convolution process, any generator not previously included in FE(x) can be added to 

FE(x) using Equation 3.11.  The generators can be added one at a time in any order.  

The final FE(x), as a measure of total system generation reliability, contains all the 

generators in the network, and is the same function regardless of the sequence or 

order in which the generators are convolved
1
. 

                                                                                                                                           
 
1
 except for small numerical errors due to rounding and truncation in the computer 
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Verifying The FE(x) Solution  

    A three generator example is used to illustrate that the FE(x) convolution 

process itself produces a correct solution.  Let Gk be two state generators with an 

EFOR for generators 1, 2, and 3 of .1, .2, and .3, respectively.  Ck generator capacities 

are 100, 150, and 200 MW, respectively.  For this small system, a binary tree solution 

to FE(x) is constructed as shown in Figure 3.15.  We have complete confidence in the 

binary tree solution for this small system.  This example will show that Equation 3.11 

produces the same results as a full enumeration of all explicit configurations in the 

binary tree.  The eight configurations possible are calculated by adding capacities and 

multiplying probabilities and are then sorted and summed. 

 

                          Individual States       Cumulative 

     Unit 1    Unit 2    Unit 3   MW   Pr   MWO    MWO  Pr   Pr 

                      20, .7 --  45, .504    0      0  .504  1.000 

             15, .8     0, .3 --  25, .216  20    10  .056  .496 

     10, .9     0, .2     20, .7 --  30, .126  15    15  .126  .440 

                    0, .3 --  10, .054  35  sort 20  .216  .314 

                    20, .7 --  35, .056  10    25  .014  .098 

       0, .1     15, .8     0, .3 --  15, .024  30    30  .024  .084 

             0, .2     20, .7 --  20, .014  25    35  .054  .060 

                    0, .3 --    0, .006  45    45  .006  .006 

Figure 3.15  Binary Tree of Three Generator Example 

 

    The last column of Figure 3.15 is FE(x)=(Pr{Gk outaged > x}) where 

x = MWO, the MW outaged.  The MWO is the compliment of the MW available, 

which is why the last column is summed from bottom to top (see Figure 3.7). 
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    Equation 3.11 can be used to produce FE(x) directly rather than using the 

binary tree method.  The advantage of using Equation 3.11 is that several hundred 

generators can be convolved with a high degree of computational accuracy.  A binary 

tree solution can easily have a tree too large to be calculated.  Binary tree cumulative 

errors cannot be easily controlled, so the binary tree approach should be used only to 

create FE(x) for a very small number of generators. 

    The binary tree example is given in Figure 3.15 is to verify that Equation 3.11 

produces the same FE(x) results.  The convolution process to create FE(x) is shown 

graphically in Figure 3.16 to better illustrate the details of the process.  Figure 3.16a 

shows the convolution of generator 1, Figure 3.16b of generator 2, and Figure 3.16c 

and Figure 3.16d of generator 3.  Figure 3.16c shows the intermediate convolution 

details of creating the new up states by scaling by .7 with no shift and of creating the 

down states by scaling by .3 and shifting by 30 MW the immediately previous FE(x).  

The two scaled curves are then added to produce the final FE(x) shown in Figure 

3.16d.  The process produces exactly the same solution as the binary tree method 

when the states in Figure 3.16d are compared with the last column of Figure 3.15.  

This process shown in Figure 3.16 is exactly the same as the process shown in Figure 

3.14. 
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 1.0                         1.0 

 

 

 Pr                + (10, .1) =>    Pr 

 

                              .1 

                                                             x                           x 

 0        10       20       30       40 0        10       20       30       40 

Figure 3.16a.  Convolving G1 Into FE(x) 

 

 

 1.0                         1.0 

 

 

 Pr                + (15, .2) =>    Pr 

                             .28  .2 

    .1                              .02 

                    x                             x 

 0        10       20       30       40 0        10       20       30       40 

Figure 3.16b.  Convolving G2 Into FE(x) 

 

 

 1.0                         1.0 

 

 

 Pr                + (20, .3) =>    Pr  .196  .14  .3  .014  .084  .06  .006 

   .28  .2                  .3 

        .02                 .7 

                    x                               x 

 0        10       20       30       40 0        10       20       30       40 

Figure 3.16c. Convolving G3 Into FE(x) 

 

 

              1.0 

 

 

         FE(x) =  Pr  .496  .44 .314 

                      .098 

                        .084 .06  .006 

                                 x 

               0   10   20   30   40 

 

Figure 3.16d.  Final FE(x) for Three Generator Example Using Equation 3.11 

FE(x) = Probability More Than x MW Of Generation Will Be Out Of Service 

(probabilities are not drawn to scale) 
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Necessity For The Use Of Continuous Functions 

    The use of discrete states on 1 MW intervals for FE(x) provides nearly zero 

error distributions for discrete generation capacity outaged.  However, incremental 

transmission line flows are never exact multiples of 1 MW.  Also, the 1 MW intervals 

are very computationally intensive.  Greater computational efficiency is realized by 

using linear and quadratic interpolation of discrete point functions.  Figure 3.17 

shows a piecewise linear (PL) continuous function and how interpolation error can 

occur when using the PL interpolation.  Error is minimized around 1000 points to 

represent the PL F(x), but begins to increase if too many points are used.  A bad 

characteristic of the PL interpolation error is that it increases multiplicatively 

(exponentially) as each new generator is added to F(x). 

 

 

 

      

 

 

 Pr 

 

 

              h MW 

                                         xmax 

   x : 0       1h       2h       3h       4h   ....   nh 

Generation MW Out Of Service 

Figure 3.17  Piecewise Linear Distribution Functional Representation 

1 

0 

linear interpolation undershoots here 

linear interpolation overshoot 

exact F(x) 

approx.   F(x) 
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Piecewise Linear Convolution 

    The only reason for presenting piecewise linear (PL) convolution is because 

the method is a simpler case of the piecewise quadratic (PQ) method.  This is a warmup 

exercise for the PQ method. 

    The PL method has two advantages over the exact method FE(x).  PL is a 

continuous function for interpolation and PL has a much higher computational speed 

than the exact discrete method (if the grid MW step size called h is much larger than 

one MW).  Figure 3.18 shows the manner is which interpolation is performed in 

Equation 3.12 when shifting the derated and outaged generator states of F(x). 

 

          interpolated point 

  1 

 

 

 

 Pr         interpolate 

            h(r + j) MW 

         x=hr    hj 

 

  0 

   x : 0       1h       2h       3h       4h   ....   nh 

 

Figure 3.18  Details For Piecewise Linear Interpolation And Shifting 

 

    In Figure 3.18, the function F(x) is to be shifted to the right by Ck and Dk MW 

to model the generator Gk down and derated states, respectively.  For each shift there 

is an integral component of shift jh and a remainder of shift x.  These shifts are 

- j is the number of h grid increments shifted 

- r is the remainder of an h grid increment shifted 

- positive r points to the left 
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related by Ck = jch + xc and Dk = jdh + xd, respectively.  Then the j values are 

jc=INT(Ck /h) and jd=INT(Dk /h) and the remainders are xc=Ckjch and xd=Dkjdh.  

The interpolation process uses a real per unit r to measure the partial distance 

remaining between discrete increments.  The per unit shift remainders are rc = xc / h 

and  rd = xd / h. 

    Equation 3.12 is used to update each discrete F(x) point as a result of 

convolving each generator k into F(x).  Equation 3.12 performs the scaling, shifting, 

and summation as a single process for the convolving of generator k into F(x).  In this 

process, no newly calculated values of F(x)
+
 on the left of Equation 3.12 equal sign 

are to be used in the right hand side of Equation 3.12.  Any occurrence of F(x<0) = 1.  

Likewise, any F(xxmax) = 0.  As each generator is convolved, xmax is increased by Ck 

MW before Equation 3.12 is applied. 

[F{jh}
+  

=  (1FORkDFORk)F{jh} 

      + DFORk[F{(j jd 1)h}rd) + F{(j jd)h}(1rd)] 

      + FORk[F{(j jc 1)h}rc) + F{(j jc)h}(1rc)]]  x = 0, xmax , h   (3.12) 

 

    The xmax will be less than or equal to nj.  As xmax is increased with each 

generator convolved, the n can also be adjusted to be a minimum value while meeting 

the requirement that nj > xmax. 

    Notice in Figure 3.18 that xmax  nh where n is the next larger integer meeting  

the requirement of nxmax /h.  For any number of generators N which includes the 

new generator plus all others already convolved, xmax = Ck
k

N

 1
.  This is the sum of all 

N generator capacities.  The xmax and n begin with the value of zero and are increased 

as each generator is convolved.  For any xxmax, F(x)=0. 
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    Figure 3.19a shows the idealized initial condition for F(x) before any generators 

have been convolved.  Because the PL function is continuous, an approximation to 

the ideal step function is required.  Figure 3.19b shows an initial F(x) with an 

expected value of zero initially.  Results comparisons with the ‘exact’ convolution 

solution method show that an initial F(x0)=1, F(x=0)=.5, and F(x0)=0 produces 

the lowest error in the final F(x) after all generators are convolved. 

 

  1                          1 

 

 

  Pr                           Pr        .5 

 

  

  0                          0 

  x:2h 1h  0  1h   2h...           x:  2h  1h    0    1h  2h... 

 

 Figure 3.19a  Idealized Initial F(x)        Figure 3.19b Lowest Error Initial F(x) 

 

    The initialization error is most evident when comparing the exact value of 

EUE (which is the integral from x to  for FE(x)) with the EUE of the PL function.  

The initialization in Figure 3.19b gives correct EUE results to several decimals of 

accuracy, whereas any other initialization produces significant EUE error.  If F(x) 

were initialized with F(x0)=1 and F(x0)=0, then the x=0 axis and every increment 

of h would be inconveniently located midway between discrete grid increments. 

    An undesirable feature of the PL is its amount of error in the right hand tail of 

F(x) after convolving several hundred generators.  The linear interpolation process in 

the PL method’s right hand tail always results in interpolation values that are too 

high, even when very small grid step sizes are used.  This error is nearly linearly 

proportional to the grid step size, which would require unreasonably small grid 

increments to achieve high accuracy.  The result of this ‘overshoot’ when using PL to 

calculate probabilistic line flows is to overestimate the amount of line overloading, 
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which would lead to overcorrection actions to unload the overloaded lines.  The PL 

overshoot error causes the load shedding energy to be overstated by such a large 

amount that results are not meaningful.  Therefore, the PL method is not used in this 

dissertation. 
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Piecewise Quadratic Convolution 

    The piecewise quadratic method was developed to improve interpolation 

accuracy over the piecewise linear method.  Preston and Grady in [34] have applied 

the PQ method to the production costing problem and show the PQ benefits over 

other mathematical formulations.  Recently, Preston, Baughman, and Grady in [1] use 

the PQ method to achieve high accuracy in the tails of line distributions.  PQ provides 

very low interpolation error in the right hand tail. 

 

 

  1 

     F(x) 

 

                r 

 

 

  Pr 

 

            r = 1   r = 0    r = 1 

                                1  r  0 

 

 

  0 

  x:  0    1h   (j1)h   jh   (j+1)h  ...                 nh 

                    x in MW 

Figure 3.20  Piecewise Quadratic Interpolation 

 

    The PQ method allows a set of discrete F( jh: j is an integer) points to describe 

a continuous function using a quadratic interpolation process.  Any three consecutive 

points of F(x) are interpolated as shown in Figure 3.20 to provide a smooth and 

continuous function F(x).  The PQ interpolation is restricted to only the region 

between the two left-most points of any set of three points to prevent the function 

from taking on negative values on the right hand tail. 

 quadratic interpolation is restricted to the 

 left-most two of the three consecutive 

 points to avoid negative F(x) (see below) 

 positive r points to the right 
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    Figure 3.20 illustrates how quadratic function interpolation is used to create a 

continuous function from a set of discrete points at h intervals on the x axis.  The 

interpolation is performed within any range (j1)h x  jh point in which j is an 

integer meeting this requirement.  Any real x is related to the discrete points using 

x=h( j + r) for the range 1  r  0.  The piecewise quadratic interpolation equation 

for calculating continuous real F(x) in Figure 3.20 for any real 0 < x < xmax is 

 

 F[( j + r)h]  =   .5r(r 1)F[( j 1)h] + (1 r
 2 

)F[ jh] + .5r(r +1) F[( j + 1)h] , (3.13) 

 

which is derived in Appendix A.2. 

    Figure 3.21 below shows the interpolation needed for the PQ method’s down 

and derated states shown in the Figure 3.14 pictorial.  The PQ quadratic interpolation 

is very similar to the PL linear interpolation process shown in Figure 3.18. 

 

  1              interpolated point 

      F(x) 

 

 

                 hr      hj 

 

  Pr 

 

            r = 1    r = 0   r = 1 

 

 

 

  0 

     0    1h   (j1)h   jh   (j+1)h  ...                 nh 

                      x in MW 

Figure 3.21  Details For Piecewise Quadratic Interpolation And Shifting 

- j is the number of h grid increments 

  F(x) is shifted to the right 

- r is the remainder of an h grid 

     increment for shifting F(x) right 

- positive r points to the left 



 

 46 

    The steps in setting up the j and r terms for PQ are the same as for PL.  The 

material is repeated here for completeness in describing the PQ process.  In Figure 

3.21 the function F(x) is to be shifted to the right by Ck and Dk MW to model the 

generator Gk down and derated states, respectively.  For each shift there is an integral 

component of shift jh and a remainder of shift x.  These shifts are related by 

Ck= jch+xc and Dk= jdh+xd, respectively.  Then the j values are  jc=INT(Ck /h) and 

jd=INT(Dk /h), and the remainders are xc=Ckjch and xd=Dkjdh.  The interpolation 

process uses a real per unit r to measure the partial distance remaining between 

discrete increments.  The per unit shift remainders are rc = xc / h and rd = xd / h. 

    Equation 3.14 for three state generators and Equation 3.15 for two state 

generators are used to update each discrete F(x) point as a result of convolving each 

generator k into F(x).  These equations perform the scaling, shifting, and summation 

as a single process for the convolving of each generator k into F(x).  In this process, 

no newly calculated values of F(x)
+
 on the left of each equation’s equal sign are to be 

used in the right hand side of the equations.  Any occurrence of F(x0) = 1 and any 

F(xxmax) = 0.  As each generator is convolved, xmax is increased by Ck MW before 

the Equations 3.14 and 3.15 are applied. 

    Equations 3.14 and 3.15 use constant parameters that are recalculated for each 

new Gk generator.  The c0 ... d2,  jc, and jd  constant parameters used in (3.14) and 

(3.15) are updated using the equations shown below for each generator.  After these 

are calculated, the convolution Equations 3.14 and 3.15 on the next page are stepped 

through each integral value of  j.  Appendix A.3 shows how these are derived. 

 

       c0 = .5rc(rc+1)    c1 = (1rc
2
)    c2 = .5rc(rc1)  

       d0 = .5rd(rd+1)    d1 = (1rd
2
)    d2 = .5rd(rd1) 

        jc  = INT(Ck / h)     jd  = INT(Dk / h) 
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The PQ convolution operation for a three state generator k is 

[F{hj}
+
  =  (1  FORk  DFORk)F{hj} 

      + FORk[c0F{h( j jc1)} + c1F{h( j jc)} + c2F{h( j jc+1)}] 

      + DFORk[d0F{h( j jd1)} + d1F{h( j jd)} + d2F{h( j jd+1)}] 

                              ]   j = 0, jmax , 1 ,   (3.14) 

 

which is derived in Appendix A.3.  The PQ convolution operation for a two state 

generator k is 

[F{hj}
+
  =  (1  EFORk)F{hj} 

      + EFORk[c0F{h( j jc1)} + c1F{h( j jc)} + c2F{h( j jc+1)}] 

                              ]   j = 0, jmax , 1 .    (3.15) 

 

    Note that the r0 region shown in Figure 3.20 has a positive r pointing to the 

right.  However, the shifting to the right of Ck and Dk MW is more conveniently 

written if the positive r direction is defined as pointing to the left.  The sign change 

defining positive r to the left as shown in Figure 3.21 has been factored into 

Equations 3.14 and 3.15.  This allows Ck = jh + x as well as r = x/ h to have all 

positive numbers. 

    Equations 3.14 and 3.15 are represented symbolically with an  operator in 

Equation 3.16 to represent the PQ convolution process. 

 

               [  F(x)
+
  =  GkF(x)  ] k = 1, Ng            (3.16) 

 

    Note that the FG(x) generation reliability is calculated using Equation 3.16.  

The line flow distributions Fj(x) have both positive and negative incremental flows 

which are discussed in Chapter 8. 
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Calculating Piecewise Quadratic EUE 

    The expected unserved energy is the integral of F(x) from any real valued x to 

 as shown by the shaded area in Figure 3.22.  For x0 let F(x)=1.  The x is separated 

into an integer j0 and a remainder r in preparation for the PQ Integral Equation 3.17. 

 

  1 

      F(x) 

 

 

         j0h      rh 

 

  Pr             h 

 

 

 

         x 

 

  0 

     0    1h    2h   3h    4h   5h  ...              nh 

              x MW Generation Capacity Outaged 

Figure 3.22  Integrating the PQ Function F(x) 

 

The point j0h is located immediately to the left or exactly on x.  Then j0 = INT(x/h) 

and r = (x/h)  j0.  The PQ equation for calculating EUE(x = Ck  y) in which y is a 

constant load for one hour (i.e. load y = Ck  x MW) is 

           EUE[x = h( j0 + r)]  = F x x
x

( )d


   MWh for 1 hr, 

or in discrete form is 

EUE[x]  = [ F hj
j

j
{ }

0

max

  + [(r
3
/6) + (r

2
3/4)  r (7/12)] 

F{hj0} + 

   [(r
3
/3)  r

2
 +(1/12)] 

F{h( j0+1)} + [(r
3
/6) +(r

2
/4) ]

 
F{h( j0+2)} ]h.      (3.17) 
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    Integration using (3.17) is efficient computationally because the integration 

process is a simple summation of F(x) discrete points plus an adjustment factor to 

account for the left end effects of the quadratic.  The unusual coefficients in Equation 

3.17 arise naturally when Equation 3.13 is integrated.  Starting with Equation 3.13, 

substitute  j0=j1,  j01=j,  j02=j1, and then integrate from r = 1 to r = 0.  Figure 

3.23 shows the area of integration.  The x axis in Figure 3.23 is shown in terms of 

discrete integers aligning with the discrete values of F(x).  The integral between any 

two discrete sections is shown in Equation 3.18. 
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Figure 3.23  Integrating The PQ Function 

 

Then 

     F jh j
j

j

( )d
0

0 1

 = [ 5
12

F(j0h) + 8
12

F((j0+1)h)  1
12

F((j0+2)h) ]h .     (3.18) 

   Integrating the rest of the h increments to the right of the one shown in Figure 

3.23 produces a series of equations whose coefficients sum to one.  Table 3.4 shows 

this sequence of sets of three coefficients summing to unity. 
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Table 3.4  Summations Of PQ Integration Coefficients For Each Interval 

j0 j0+1 j0+2 j0+3 j0+4 

5 

12 

8 

12 

-1 

 12 
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 
1

6

3

4

3 2r r r  
1

3

3 2r r   
1

6

1

4

3 2r r  
these are 

added if  

r > 0 

 

 

    The last row of Table 3.4 is the negative of the integral of from j0 to j0+r 

which removes the area already added by the terms above the last row.  The r term 

allows integration from any real x to .  The overall integration process of a function 

with hundreds of intervals is efficient in PQ format because a simple summation 

process is used for all but three of the points. 

                                                 
1
 Column j0 sums to 5/12 which is equal to 17/12. 

2
 Column j0+1 sums to 13/12 which is equal to 1+1/12. 
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 PQ Initialization 

    Every PQ distribution is initialized before proceeding with convolving the 

outage states.  The procedure for initializing PQ is similar to the piecewise linear 

initialization shown in Figure 3.17 but is slightly more complex.  Initializing the 

generation outage distribution FG(x) is given in Figure 3.24.  Figure 3.24a shows an 

idealized initial condition for FG(x) before any generator outage states are convolved.  

The PQ function cannot represent the step function, so an approximation is required.  

Figure 3.24b shows an initial FG(x) with an expected value of zero initially. 
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13  ~.5 

 

                                    B 
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  x:2h 1h  0  1h   2h...           x:  2h  1h    0    1h  2h... 

 

 Figure 3.24a  Idealized Initial FG(x)      Figure 3.24b  Best PQ Initial FG(x) 

 

    The value of 7
13  is derived by differentiating A and B PQ equations using 

(3.12), then finding the expected value of the density functions of A(p) and B(p) in 

Figure 3.24b.  Integrating rA from r=1 to r=0 and rB from r=0 to r=1 shows that 

the expected value is exactly zero when p= 7
13 .  However, the use of p=.5 introduces 

little error when PQ is compared with the ‘exact’ method.  An argument is presented 

on the next page that shows p=.5 initial value is favored when the initialization 

procedure for line flow distributions is considered.  The initial MaxGen configuration 

line flows rarely align with an even grid increment. 
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    Initializing a PQ function for transmission line j MaxGen configuration MW 

flow requires finding a p that produces an expected value of the PQ function equal to 

the MaxGen configuration MW load flow solution line flow.  Figure 3.25 shows the 

ideal and the PQ line function initializations. 
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                                  A 

                 MaxGen MW flow xoj          p         xoj 

  Pr        r                    Pr   

 

                                     B 
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       hj PQ Fj(x) grid i steps             hj PQ Fj(x) grid i steps 

 

 Figure 3.25a  Idealized Initial Fj(x)        Figure 3.25b  Best PQ Initial Fj(x) 

 

    The value of p in Figure 3.26b giving exactly the same expected value as the 

step function in Figure 3.26a is p(r)=(12r+7)/13.  Solving for the range of r shows 

that p(r= 7
13 )=0 and p(r= 1

2 )=1.  However, the equation p(r)(12r+6)/12 is 

actually used as a close approximation.  The line flow distribution error introduced by 

this approximation is much smaller than other errors in the convolution process.  

Figure 3.27 shows the two p(r) expressions plotted to scale. 
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Figure 3.27  Calculating Initial Line Distribution Parameter p(r) 
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    Transmission line PQ distributions are initialized with their MaxGen 

configuration MW flow xoj.  Assuming the line’s grid step size hj has been 

determined
1
, as well as the minimum and maximum ranges of the x MW flow axis, 

then there is a grid increment in which xoj is less than or equal to half an hj distance 

from the xoj.  A single grid increment satisfying  .5r .5 is identified.  Use  

r=[xoj/hj  INT(xoj/hj)] to find an r in the range 0r1.  If r.5, then replace r with 

its complement r=1r and initialize the next larger increment.  Use the approximate 

equation p=r+.5 to initialize this one grid increment.  All lower index grid 

increments are initialized to one, and all higher index grid increments are initialized 

to zero
1
.  By using the approximate equation for p rather than the exact equation, the 

break points for r are nicely positioned halfway between the even grid increments.  

The exact equation for p has a range of r greater than one, which creates confusion in 

the selection of the appropriate grid increment to initialize.  Therefore, the exact 

equation is not favored by the author and is not used. 

                                                 
1
 See Chapter 8 for more details on setting up the line distribution functions. 
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Chapter 4 

Solution Methodology 
 

    The experiences conveyed in Chapter 2 show that the composite generation-

transmission problem solution has been attempted using a number of mathematical 

approaches.  These experiences and their failures helped shape the thinking that has 

gone into the PLF approach taken in this dissertation.  Chapter 4 discusses why 

certain solution approaches have been discarded.  The last part of Chapter 4 outlines  

a series of 27 steps that constitute the new PLF solution procedure. 

 

Equivalent Versus Full Transmission Network Representation 

    A theory for creating a network probabilistic equivalent model of a large AC 

electric network does not exist.  The network equivalents presented in the literature 

[62,87] are equivalent impedance models in which specific lines in the real network are 

retained while the rest of the lines are replaced with a set of equivalent impedances.  The 

literature does not describe how to set up the equivalent impedances to give equal 

performance as limiting transmission elements with capacity constraints and failure 

states.  A probabilistic model using a full network representation avoids the issue of 

whether the network being reduced has corrupted the solution.  A network equivalent 

must be newly created.  If a full network model is used instead of an equivalent, then it is 

readily available from each large region without further effort to create additional new 

data. 

    The use of a network equivalent is driven by a need to increase the solution 

speed so a larger number of generation configurations can be enumerated and tested.  

The solution speed increase in the NARP program was not useful since most of the 

transmission system was not represented in the equivalent, and no significant 

transmission line overload events were observed. 
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    To allow more transmission detail in the equivalent, a new transmission 

model was proposed to ERCOT based on the REI equivalent network [62,87] shown 

in Figure 2.3.  The REI adds many new links to make the incremental ‘tie’ flows 

correct for each generation configuration.  This new more detailed network model 

still makes the assumption that the tie lines are sufficient for monitoring and 

constraining the generation.  It ignores the fact that many problems are frequently 

associated with lines other than tie lines. 

    The more detailed REI equivalent has a new problem because of its size.  

Computational efficiency is lost.  The number of new REI links causes the load flow 

solution matrix to lose much of its sparsity by creating a large number of new fill 

terms during the matrix reduction and solution.  The hoped for computational 

efficiency of the REI is significantly diminished by the additional fill terms [97]. 

    An example is given to illustrate the fill problem.  The full matrix 

representation of the 4300 bus 5200 transmission line example given in Chapter 11 

typically has a maximum sparse matrix size of ~15,000 complex numbers using the 

sparse techniques in [97].  An estimate of the REI number of links for the ERCOT 

network with 300 power plants at 92 physical sites and 196 tie lines is shown in 

Table 4.1.  It has 2960 total lines and 196+196+92 = 484 buses in the reduced 

network. 

    In a full network, the extra matrix fill terms are about equal to the original 

number of off-diagonal terms.  4300 diagonal terms + 5200 upper matrix terms = the 

initial full network matrix.  Then the additional 5500 fill terms increase the matrix 

size to about 15000 terms. 
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Table 4.1  Estimates for an ERCOT REI Model 

 

Area Plant Sites Tie Lines Equivalent Lines 

TU 24 45 1080 

HLP 18 12 216 

CPS 4 7 28 

WTU 6 31 186 

LCRA 8 19 152 

STEX 16 13 208 

COA 2 6 12 

TMPP 14 63 882 

Totals 92 196 2764+196=2960 

 

 

    How does the REI matrix compare?  The initial REI has 484 (11% of 4300) 

diagonal terms plus 2960 off-diagonal terms.  If fill terms are assumed to be twice as 

high in the equivalent, the final REI matrix has a total of 9364 numbers.  This puts 

the REI equivalent at about 60% the size of the full system matrix rather than at the 

11% size based on the number of network buses retained in the equivalent. 

    The REI does not appear to be an attractive approach since the solution is 

neither fast nor accurate.  Loss of network information in the equivalent, small 

savings in matrix size, and the extra work in creating the equivalent are good reasons 

not to pursue this approach. 
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Generation Configuration Enumeration Versus Convolution 

    The enumeration of specific generation configurations is the most widely used 

method of accounting for the effects of random generator outages in the composite 

generation-transmission problem, as evidenced by the number of references using this 

approach [3,5,6-29,31,36,56-95].  Interestingly, the opposite is true for the modeling 

of random generator outages in power production costing studies.  When transmission 

systems are not considered, the convolution method is preferred [10,32-54]
1
. 

    Enumeration is dominant in the composite generation-transmission models 

due to the necessity for solving a deterministic electrical network matrix in order to 

calculate the transmission line flows.  The electrical matrix solution is not readily 

solved for random variable inputs. 

    Convolution is widely used in production costing methods because the 

computation speed is high and solutions are direct and unique.  All the generation 

outage configurations are modeled.  Enumeration of generation configurations using 

the Monte Carlo method (GENH and ENPRO) can require longer solution times than 

the more direct convolution procedures (POLARIS, PROMOD, and PROSCREEN). 

    A simple example shows why direct enumeration of all generation outage 

configurations is not computationally possible in a large system.  Let a small system 

have 100 two-state generators with Pr[on,off] = (.95,.05) for each generator.  The 

total number of configurations is 2
100

  10
30

.  If 1000 configurations are evaluated 

each second, the total run time for a single solution is more than 10
19

 years!  If a 

binary tree diagram is drawn for this problem on a flat sheet of imaginary paper with 

one centimeter spacing between lines in which each line shows the status of each of 

the 100 generators, then the diagram will stretch across a space of one trillion light 

years.  This is larger than the universe! 

                                                 
1
 Chapter 3 gives an example showing the equivalence of convolution and enumeration. 
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    An argument can be made that the uniformity of each generator’s states in the 

100 generator example can be exploited, and the total probability of clusters of states 

in which one, two, three, etc. generators are outaged at a time is easily calculated by 

enumerating one state and using the results of the one state as the solution to a large 

number of other states.  However, real generators have different forced outage rates 

and are physically located at different points in a completely non-homogenous 

transmission network.  Short-cut solution approaches are unlikely. 

    The real power flow distributions in every transmission line are strongly 

determined by 1) line locations, 2) line outage states, 3) generator locations, 4) 

generator capacities, 5) generator outage states, 6) locations of loads, and 7) 

magnitudes of loads.  Electrical networks are completely non-repetitive, non-uniform, 

and non-homogeneous.  The lack of a repetitive structure of the layouts of the actual 

physical networks requires enumeration methods to spend more time testing a system 

to find all the line overload configurations due to generation outages and line outages.  

    Based on the discussion thus far, there seems to be no common solution to 

two basic conflicting requirements.  One of the requirements is a necessity to solve 

the electrical network as set of specific configuration enumeration cases.  Another 

requirement is the need to exhaustively model the generation outage configurations, 

which is not possible with the enumeration approach because too many 

configurations exist to study all of them.  Better sampling techniques are being 

developed [3], but the author believes the configuration space is much too large and 

irregular to make this approach successful. 

    The other solution possibility is to remove the necessity of using an electrical 

matrix solution for calculating every new set of transmission line flows for every 

generation and line outage configuration.  This is the choice of the author because it 

allows convolution to be used, which solves the problem of calculating the 

immensely large numbers of generation outage configurations. 
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Transmission Line Flow Linearity Requirements 

    The discussion thus far indicates that a full electrical network representation 

is preferred, and convolution is the best way to cover all the generation outage 

configurations.  The convolution process requires linearity in the summation of line 

flows.  Line flows consist of both real and reactive power.  The real power flows in 

the network are strongly a function of all generators and loads throughout the 

network.  Reactive power flows are strongly related to local voltages, local shunt 

inductance and capacitive sources, and the real and reactive power flow in lines.  The 

electrical network is reasonably linear in power if bus voltage magnitudes in the 

network are nearly constant and real line losses are small.  If voltage magnitudes at 

regulated buses are held constant, the real power line flow distributions are almost 

linear with respect to generation, loads, and line impedances.  The linearity 

characteristic is exploited in this dissertation to make the convolution approach 

feasible.  This is the reason all load flow cases for calculating incremental line flows 

due to generator outages are solved with an unlimited reactive power at the 

generation buses. 

    The network reactive power model is much more nonlinear than the real 

power model because transmission lines have much higher reactive losses than real 

power losses.  In an actual system these line losses appear on each line and are 

corrected locally.  Transmitting reactive power through the network causes voltages 

to increase or decrease from nominal levels, which is an undesirable characteristic.  

Therefore, reactive compensation in the real world is best applied at distributed 

locations where needed rather than transmitted from remote locations.  An 

insufficient amount of reactive generation available locally may result in voltage 

collapse.  A convolution model for non-linear reactive power has not been included 
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with the real power convolution model in this dissertation.  The convolution method 

presented in this dissertation cannot model the voltage collapse phenomena. 

    The convolution method must have linearity in real power transmission line 

flows.  For example, if generator A is outaged and causes an incremental flow of X 

MW in a transmission line; and if generator B is separately outaged and causes an 

incremental flow of Y MW in the same line; then the simultaneous outaging of both 

A and B generators must cause X+Y MW of incremental power flow in the line.  If 

the incremental power in each line is known for each generator’s outaged state, and 

the incremental line flows are linear for multiple generators outaged, then simple 

summations can be used to estimate the power flows in all lines for any configuration 

with several generators outaged. 

    The convolution approach requires
1
 the sum of all the incremental line flows 

due to all generators and all loads (+ losses) be in agreement with a full network AC 

load flow solution with all generators running at maximum capacity.  This is a unique 

configuration since it defines the maximum amount of load (+ loss) that can be 

served and is given the name MaxGen.  Load levels greater than the MaxGen 

configuration are unserved. 

    Another unique configuration is the one with all generators in a state of 

failure.  This configuration serves no load and has nearly zero real power line flows.  

The zero load configuration is of lesser importance since line overloads generally do 

not occur at low load levels.  Also, the total probability of having most of the 

generators outaged is small. 

    A MaxGen configuration load flow is set up and run first.  Then additional 

load flows are run as variations of the MaxGen configuration case in which a single 

generator is outaged for each new load flow case.  This allows all the incremental 

                                                 
1
 Required because the sum of all outages must produce zero MW line flows. 
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line flows for each generator outaged to be calculated by subtracting the results of 

each case from the MaxGen case.  These incremental flows are normalized and 

stored in an Hj,k matrix of lines j and generators k for use in enumeration and 

convolution operations.  In creating this matrix, the individual load flow solutions 

need to be solved to a very tight tolerance to minimize cumulative line flow errors 

when summing large numbers of small incremental flows.  The author’s experience 

shows .01 MW maximum power mismatch at each bus in all the solved load flow 

cases produces sums of distributions with less than 1% error whereas .1 MW 

maximum power mismatch at each bus has been observed to produce as much as 

15% summation error for the ERCOT system.  This summation error is easily 

observed at radial generator buses with no load.  The error being discussed here is 

prior to any scaling or adjustments to minimize the overall error in summing the 

incremental flows on each line. 

    The matrix of incremental line flows can be used to estimate the total line 

flows for any specific configuration of generators outaged.  An enumeration approach 

using this matrix to cover all generation outage configurations is not feasible because 

far too many configurations would need to be calculated.  Convolving the individual 

generator outage states is feasible and was covered in Chapter 3.  The convolution 

process produces cumulative line flow distributions that closely approximate the 

distributions that would have been calculated if all combinations of generation outage 

states were fully enumerated. 
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Load Model Considerations 

    The MaxGen configuration load flow and generator outage load flows are 

used to calculate a matrix of generator-line distribution factors [1,29,55] for 

calculating the incremental line flows associated with generator outage and derating 

states.  When a generator is outaged in a load flow: 1) other generators must increase 

their power output, or 2) load must be reduced.  The total generation power must 

exactly equal the total load plus total losses at all times in every load flow solution. 

    Load and generation can be adjusted an infinite number of ways to meet the 

total power requirement when a generator is outaged.  Some of the possible 

adjustments are conditional.  An example of conditional dispatch of power is when 

power can be made available to a load area when another area does not need the 

power.  This situation requires a more complex conditional probabilistic convolution 

process.  Some production costing programs use a series of convolutions and 

deconvolutions to model one type of conditionally probabilistic dispatch of 

generators.  The deconvolution process is difficult to implement, is numerically 

unstable, and is computationally time consuming.  The convolution approach here is 

to treat all generator outages as independent events.  The formulations requiring 

conditionally probabilistic events will not be modeled in this dissertation. 

    The usual enumeration model approach for replacing the capacity of an 

outaged generator is to increase the power on the other generators.  The physical 

system also responds in this manner when a generator fails.  Other generators 

increase output power to make up for the lost capacity, which can occur if surplus 

capacity is available.  If no surplus capacity is available when a generator is outaged, 

loads must be reduced to keep the network operational. 

    The PLF model load+losses MW is always set equal to generation MW and 

the generators are always run at maximum output for every generation outage 

configuration.  
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    There is never spare generation capacity in this solution process.  The only 

response possible in the PLF model is to initiate load reductions as generators are 

outaged.  If the PLF had been designed to model spare generation capacity, 

conditional probabilities would have been needed, as well as a definition of how 

spare capacity is to be shared in the system.  The mathematical formulation and 

definitions would be more complex and harder to follow than what is presented here.  

Some of the information required to define the conditional dispatches has yet to be 

completely and uniquely defined in the real world operational practices. 

    Generation outaged in this convolution model always results in a load 

reduction.  The amount of reduction and the location of load reductions should be 

optimally calculated to minimize the total loss of load.  One important requirement in 

using the convolution method with any load reduction scheme is to insure that the 

sum of all incremental load reductions are consistent.  The sum of loads shed at any 

bus cannot exceed the total load on that bus in the MaxGen configuration load flow.  

This condition is stringent enough to eliminate the use of a single generator slack bus 

in the load flow.  Two basic methodologies for executing load shedding (load 

reduction) are LLS for load loss sharing and NLLS for no load loss sharing. 

 

Load Loss Sharing 

    The PLF model presented here is consistent with single area reliability results.  

Single area reliability analysis calculates the total system generation adequacy.  

Unserved load occurs when random generator outages cause generation capacity to 

drop below the total system load level.  A measure of reliability is the probability of 

being generation deficient in serving the total system load.  Individual area generation 

reliability is not calculated. 
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    The simplest extension to the single area model in creating a composite 

generation-transmission model is to calculate the additional decrease in the total 

single area reliability imposed by the transmission system.  The idea here is that every 

bus in the network has the same physical reliability as the system as a whole if no 

transmission constraints exist.  This definition allows transmission constraints to be 

calculated as a simple extension to the single area analysis. 

    Note that this is a physical interpretation of the system rather than a legal 

interpretation.  Contractual agreements between individual load areas can change the 

reliability of generation supply to each area.  The modeling of supply contracts and 

their effect on the reliability of generation in each area is beyond the scope of this 

dissertation and will not be considered here. 

    The discussion presented on this page thus far is consistent with a load loss 

sharing (LLS) methodology.  Why is this so?  Because the only way to have exactly 

the same generation reliability on every bus in the network is to probabilistically 

dispatch every generator to all buses in the network on an equal basis.  Every bus load 

gets a small prorata share of each generator’s power.  This uniquely defines how the 

loads in the network are to be scaled for each case with a generator outaged.  The 

entire system load is linearly scaled to account for both the drop in generation power 

in the network as well as the change in losses.  No load flow slack generator is used. 

 

No Load Loss Sharing 

    The NLLS methodology allows owners of generators to have first call on their 

own generation capacity.  Conversely, when a generator is forced out of service, the 

owners of the outaged generator(s) will have their loads shed unless other surplus 

generation capacity exists in the system.  Surplus generation is used by load areas 

needing capacity but the sharing methodology for surplus capacity is not well 
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defined.  The NLLS load model is conditional on the availability of surplus 

generation.  The surplus generation is only available if other areas are not using the 

generation and the overall generation exceeds the total system load. 

    The NLLS methodology has problems that prevent it from being used in the 

PLF model in this dissertation.  The most important problem with NLLS is the very 

definition of generation reliability the NLLS creates.  The NLLS does not result in 

every load bus receiving the same generation reliability as the single area reliability.  

Each area’s load buses become a function of the FOR’s of each area’s owned 

generators.  Individual contracts between companies and complex operating rules 

would need to be a part of the input data in the NLLS model.  This data is not 

presently used in regional studies and would be difficult to obtain. 

    The NLLS is not a simple extension of the single area analysis.  The NLLS is 

a new measure defining a different reliability for each area even though no 

transmission constraints are included.  Adopting the NLLS load model here would 

result in the need to develop a new mathematics based on conditional probabilistic 

convolution.  This topic has not been presented in the literature and constitutes a new 

area of study separate from the transmission model developed here.  The NLLS 

convolution model may not be mathematically possible.  The NLLS model will not be 

used in this dissertation for these reasons. 
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Measuring Single Area (Total System) Generation Reliability 

    The reliability of the total system generation is measured in terms of a 

function FG(x) which is the probability that the total generation outaged is greater 

than x MW.  Figure 4.1 shows FG(x) for the 286 generator test model.  As an example 

of how to read Figure 4.1, one could say there is a 10% probability that more than 

14% of the total ERCOT generation MW will be out of service. 
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Figure 4.1  Probability Outaged MW > x 

 

    In this dissertation the FG(x) definition is extended to mean the relative 

generation reliability at every load bus in the network.  This definition is a physical 

interpretation of the system in which the network is constrained by the total 

generation capacity and reliability and by the capacities and reliability of the 

transmission system.  Loss of load due to generation is shared proportionately on all 

load buses.  This requires a generation supply load loss sharing (LLS) methodology. 

FG(x) 
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    Although the generation supply is applied uniformly to all load buses, the 

transmission system constraints caused by individual lines requires the load 

sheddings due to line overloads be performed on the basis of specific generation and 

loads in the network that are the most responsible for causing the line overloads.  The 

generation-load pairs that are the best candidates for load sheddings are listed in 

descending order in a load shedding table (LST).  Frequently the entries in the LST 

have exactly the same ability or benefit in unloading overloaded lines.  This creates a 

sharing and allocation solution problem similar to the NLLS problem previously 

discussed.  There is an element of non-uniqueness in the load shedding solution that 

cannot be avoided unless more loss sharing information is supplied. 

    In addition to the FG(x) as a measure of the probability of being capacity 

deficient, a better indicator of reliability is the expected unserved energy, or rather 

the EUE(x) as a function of the load x MW
1
.  The EUE(x) is the integral of FG(x) 

from x to  and is used to cover a one hour period (in this dissertation).  Frequently 

the EUE is calculated for an entire year, which includes all the operational data such 

as generator and line maintenance schedules and hourly loads, but the transmission 

system reliability is best measured at the highest load level in which there is no 

scheduled maintenance.  Limiting the analysis to peak load periods simplifies the 

data gathering process and allows the user to study the primary problem rather than 

be burdened by unimportant data.  Also, the solution time for solving an entire year 

with maintenance schedules would be at least ten times greater than the approach 

taken here.  Therefore, the author has elected to calculate the transmission system 

reliability and the transmission system’s effect on generation reliability only at the 

peak load periods. 

                                                 
1
 Note that the maximum load occurs for zero outaged generation MW as shown in Figure 4.1.  The 

load level is equal to the total generation capacity minus the generation outaged. 
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Deterministically Removing Line Overloads 

    The removing of line overloads is the last step in the solution process after all 

probabilistic line flows due to all generator outages have been calculated.  To 

understand this process requires a knowledge of the relationship between specific line 

flow states and generator states.  If a binary tree diagram is constructed for all the 

configurations of the generation states, then there is a unique line flow state for every 

configuration.  Figure 4.2 illustrates this by showing that generator configuration with 

probability p in the binary tree has a unique location on both the generation outage 

distribution and on the line flow distribution. 

 

 

                 Pr    p               Pr 

                                          p 

    Gen. States       MW              MW 

             p      Generation States FG(x)       Line Flows 

 

 

 

Figure 4.2  Generator Configuration With Pr p Is Shifted To Reduce Line Loading 

 

    The figure shows how a shift in the line flow p configuration to the left 

corresponds to a unique shift of the same p configuration to the right in the generator 

outage distribution.  On the binary tree a single generator out of many is identified 

and is reduced in MW output, and this effectively causes the MW shift of p in the two 

distributions.  All the lines in the network will each have a shift in the p configuration 

in the same manner as shown for the one line in Figure 4.2. 
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Measuring Multi-Area Generation And Transmission Reliability 

    Multiple load areas are part of the load flow set of data.  Each bus in the 

network is assigned to an area.  There may be any number of areas in the load flow, 

except each area must have at least one bus specified within the area.  The load MW 

within each area is the sum of all the bus loads within the area.  The load within each 

area in the original load flow data is scaled so that the MaxGen configuration load 

flow area loads are equal to owned and purchased generation capacity. 

    The generation reliability within each area is defined as being the same FG(x) 

function as the example shown in Figure 4.1, except the x axis of this function is 

scaled to represent the total load within each area.  The percentages shown on the x 

axis in Figure 4.1 become the percentages of unserved load for each area from the 

MaxGen load for each of the areas respectively.  In this manner each area receives 

the same level of generation reliability before transmission constraints are applied. 

    Transmission constraints are reduced when the line overloads are 

deterministically shifted as shown in Figure 4.2.  For each specific state with 

probability p that is shifted, a real generator and a ‘virtual generator’ are matched to 

create a generator-load pair that is reduced in MW level so that the corresponding p 

state causing the line overload is shifted to a lower level of overload for the line.  The 

reduction in MW for probability p is mapped back to the total system FG(x) and to the 

local load area’s FG(x).  In this manner, the decrease in reliability due to transmission 

constraints is assigned to specific load areas. 

    The virtual generators mentioned above are injections of power at load buses 

in which the load is to be reduced.  Real power incremental line flows from virtual 

generators are combined with real power incremental flows from the generator to 

produce incremental line flows equal to the incremental flows seen in an AC load 

flow in which the generator and area load are simultaneously reduced. 
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Summary Of The PLF Solution Procedure 

    The steps of the PLF solution procedure to evaluate the generation outage 

states using convolution and the transmission line outage states using enumeration are 

given below.  Details are given under each step, except the mathematical details of 

the load flow procedures, the convolution mathematics, and the procedures for 

shedding loads are covered in later chapters. 

 

Step 1.  Read all the input data into a computer program, then in the program, scale 

loads to match total generation supply, and solve the MaxGen configuration load 

flow.  The input data consists of the usual load flow data for the large area plus the 

generator data of FOR, DFOR, maximum capacity, and derated capacity.  Appendix 

D.1 shows an example of the load flow and generator input data.  After the data is in 

the computer program, the bus loads in each area are scaled to matched owned and 

purchased generation for each area.  This sets up the required ‘MaxGen 

configuration’ load flow condition in which no generators are outaged, and a 

maximum amount of load is being served.  The regulated buses maintain specified 

voltages with no reactive constraints.  Lines may be overloaded in the MaxGen 

configuration load flow case.  Corrective actions are taken later in Steps 10-20 after 

the probabilistic line flow distributions have been calculated. 

 

Step 2.  Calculate FG(x), which is the reliability of the total system generation 

supply without transmission constraints.  Convolution of all generator outage states 

produces the FG(x) function.  Chapter 3 presented the mathematical details of the 

convolution process.  The FG(x) function x range is scaled to match whatever 

maximum load is being served.  For the total system, the x is set to measure total 

system MW load at x=0 down to zero MW load at x=xmax .  This is the normal scale 
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for the abscissa of FG(x).  Likewise, for any load area or any load bus, the x axis is 

scaled to measure the maximum MW load at x=0 down to zero MW load at x=xmax .  

This is equivalent to calculating the reliability of generation supply at every bus in the 

load flow separately.  Since the reliability of generation supply is the same 

throughout the network before transmission constraints are considered, the FG(x) is 

scaled to represent that same reliability rather than actually performing the 

convolution of generation states for every load bus. 

 

Step 3.  Run single generator outage cases to calculate incremental line flows 

associated with each generator outage.  These are found by subtracting the generator 

outaged case line flows from the MaxGen configuration real power line flows.  The 

incremental flows are stored in array Hj,k for lines j and outaged generators k.  To 

perform Step 3, the generator outaged load flow case is modified from the MaxGen 

case by uniformly scaling down the bus loads across the network to account for the 

outaged generation capacity.  To eliminate the need for a slack bus, the total system 

loads are also scaled during the load flow solution to account for incremental losses. 

 

Step 4.  Run virtual generation incremental cases and append the results to Hj,k.  

The virtual generation incremental line flows are calculated in this step but are not 

used until Step 11, which is the load shedding operation.  Individual load flow cases 

are set up and solved for each virtual generator case.  One virtual generator case can 

represent load shedding on a single load bus or on a group of load buses such as an 

area.  The PLF program models the virtual generation incremental flows by 

effectively increasing all the loads in an area by 50% and at the same time decreasing 

the total network loads.  Note that the 50% increase in loads are stored in a separate 

array from the regular bus loads and are held constant throughout the load flow
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solution.  All bus loads are uniformly scaled downward to meet the total power 

requirement.  This includes scaling the load shedding buses also.  The load flow is 

solved the same as in Step 3 by adjusting all loads proportionately to account for the 

total system real power loss.  The PLF program calculates virtual generation for every 

area rather than every bus in the network.  This allows load shedding to be done 

uniformly within each area.  Load areas in the PLF can be defined as small as 

necessary to represent any level of load shedding detail desired in a study. 

    How these load shedding areas are defined has a very large effect on the load 

shedding energy for each area.  The most detailed model representation possible is to 

treat every substation (that has a load) as a separate virtual generator for load 

shedding.  This level of selective load shedding will minimize the overall EUE load 

shed because load is shed closest to the overloaded line.  However, the computational 

effort to have a virtual generator at every load bus is large.  A faster approach is to 

assume a lower bound on the line distribution factor.  This assumes that a load 

somewhere in the vicinity of the overloaded line exists with the distribution factor 

equal to the lower bound.  The EUE will be minimized using this approach without 

modeling virtual generation at every bus.  The PLF program can be run either with 

any level of detail in defining load areas or can be run with a lower bound on the line 

distribution factors. 

 

Step 5.  Adjust the dominant Hj,k MW flows to improve linearity.  The sum of all 

generator outage incremental real power flows in Hj,k should produce MW line flows 

in agreement with the MaxGen configuration MW flows on all the transmission lines.  

However, due to nonlinear load flow solutions, the sum of incremental real power 

flows in a line is only an approximation to the actual MaxGen configuration flow.  

On every line, the sum can be adjusted to agree exactly with the MaxGen 
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configuration flow by slightly adjusting the Hj,k line flows calculated in Step 3.  

Experience shows the adjustments are usually small.  In the systems tested in this 

dissertation, the average correction is one to two percent of the line ratings on 

average.  The total MW flow in each line is the sum of many incremental flows in 

both directions on each line.  The major incremental flows in the same direction as 

the MaxGen configuration flows are called the ‘dominant’ incremental flows.  The 

operation performed in Step 5 scales only the dominant incremental flows so that the 

sum of all incremental flows agrees exactly with the MaxGen configuration flow.  

Each line is adjusted as a separate operation. 

 

Step 6.  Normalize the real MW incremental flows in Hj,k to per unit values by dividing 

each Hj,k term by the MW real generator Ck or by the virtual MW generation. 

 

Step 7.  Discard analysis on lines that will not overload at all.  Define a direction of 

flow on each line as the positive direction.  Negative is in the opposite direction.  

Then sum separately the positive and negative incremental flows on each line.  If 

both the positive and negative flow sums for a line are less than the line rating, then 

the line will never overload for any generator outage configurations.  Lines that have 

positive and negative flow sums less than their line ratings can be discarded from 

further analysis, since they will never overload for any generation outage 

configuration.  

 

Step 8.  Calculate line flow distributions Fj(y).  The probabilistic line flows are 

calculated in a manner similar to FG(x), except the convolution is performed twice to 

maintain convolution solution accuracy.  The PQ process for calculating the line 

distribution is accurate only in the right hand tail.  Since the left hand tail also 

contains line overloads, the convolution must be repeated with all incremental line 
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flows reversed in direction.  All incremental flows are convolved once in the + 

positive direction and again in the  direction. 

    Convolution mathematical details using a piecewise quadratic functional were 

given in Chapter 3.  In summary, the incremental line flows are convolved together 

on each line using each generator’s state probabilities to produce a set of line flow 

distributions.  The line flow distributions are the Fj(y) calculated in this step.  Since 

the lines with no possibility of overload have already been eliminated in Step 7, every 

line in Step 8 is overloaded.  All the Fj(y) distributions calculated in Step 8 will have 

a portion of their right hand tail of the distribution function extending beyond the line 

rating as illustrated in Figure 4.3. 

 

  1 

 

                            

  Pr 

 

 

  0 

        rating         0 MW         + rating 

 

        Figure 4.3  An Example Of Probabilistic Line Overload 

 

Step 9.  Discard analysis on lines with low overload probability.  Many lines will 

have an extremely small probability of overload in the right hand tail of Fj(y).  Lines 

with probability of overload less than 10
-12

 can be eliminated.  This probability of 

overload is too small to affect output results. 

 

overloaded 

Fj(y) 
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Step 10. Choose line j with the largest probability of overload (flow distributions 

are calculated in Step 8).  Choose a small increment of y MW on this line to unload.  

The y increment has an average probability p.  Step 20 shows why the line j 

probability must be the largest.  This is the first step in a process of removing line 

overloads from all the Fj(y) for lines that have not been discarded in Steps 7 and 9.  

Chapter 10 gives a more detailed explanation of the processes in Steps 10-20.  The 

steps below are only a summary. 

 

Step 11. Create a load shedding table (LST) for line j if it has not already been 

created.  The real generator Hj,m distribution factors for line j and the virtual generator 

Hj,n distribution factors (in Chapter 7) for line j are combined using Hj,m-n= Hj,m - Hj,n 

linear superposition to create all combinations of generator-load pairs of distribution 

factors Hj,m-n for line j.  The combined factors that have the greatest positive values in 

the direction of line overload are the generation and load combinations that are 

mostly causing the line to be overloaded.  An LST is constructed in which the greatest 

factor generator-load pair is at the top of the list, the next greatest factor is second, 

and so on.  The LST is a table of generator-load pairs in which the factors are sorted 

in descending order from greatest benefit to least benefit in being able to unload the 

overloaded line j. 

 

Step 12. Recalculate the line distribution function Fj(y) for line j using only the Hj,k 

generator flows causing an increase in overload.  This step partitions the generators 

contibuting to the overload and those reducing the overload into two sets.  The line 

flow distribution is recalculated in Step 12 using only the generators contributing to 

the line overload
1
.  These are referred to as increasing flows.  These increasing flows 

                                                 
1
A detailed explanation for the necessity of this step is given in Chapter 10. 
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are convolved together to give a distribution that is only a function of generators 

causing the line to be overloaded.  The line overloads due only to the generators 

causing the overloads are shown in Figure 4.4.  If the decreasing flows are convolved 

into the function shown in Figure 4.4, the original flows causing overloads are 

scattered across the functions.  Their locations are no longer identifiable, as shown in 

Figure 4.5. 

 

  1                      1 
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Figure 4.4  Line Distribution Due Only To Increasing Flows 
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Figure 4.5  Shift In Line Overloads With Decreasing Flows Included 
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    Figure 4.5 shows that the original line j overloads in Figure 4.4 cannot be 

exactly located in the generation outage states distribution after the decreasing flow 

generators are convolved into the function.  A new function F(x,y) is used in Step 18 

to locate the line j overloads after decreasing flows are convolved. 

 

Step 13. Use the Fj(y) of increasing flows to initialize F(x,y).  The F(x,y) will 

allow three measures to be directly linked together so changes in one can be mapped 

to the others.  These are: 1) line j overloads, 2) specific generation-load pairs to be 

used in the shedding of load, and 3) the incremental changes to FG(x) caused by 

removing the line overloads.  Figure 4.6 shows an example of the initial F(x,y) which 

consists of only the increasing line flows. 

 

 

 

                  y 

    1 

 

 Pr 

    0 

 of increasing flow gen. 

 

direction of shifted states in Step 14 

FG(x) is inverted and x axis is reversed            x 

                          of all generation MW 

 

           Figure 4.6  An Example Of Initial F(x,y) 

 

line j overload states in Fig. 4.4 

+ rating  y  max. line flow  

F(x,y) 
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Step 14. Convolve the decreasing line flow generators.  The convolution of 

negative flow generators into F(x,y) causes the line overloads to shift downward in 

the negative y direction in Figure 4.6 and, at the same time, shift in the positive x 

direction.  Figure 4.7 shows how F(x,y) may appear after these convolutions.  Step 15 

will begin a process of identifying individual load shedding distributions. 

 

 

                  y 

    1 

 

 Pr 

    0 

 increasing flow gens. 

 

 

FG(x) is inverted and x axis is reversed            x 

                          of all generation MW 

 

     Figure 4.7  An Example Of F(x,y) With All Generators Convolved 

 

Step 15. Convert F(x,y) to a partial density function Fp(x,y) by subtracting adjacent 

x rows for all y.  Fp(x,y) = F(x,y)F(xhx ,y) where hx is a discrete grid spacing.  The 

reason F(x,y) in Figure 4.7 is converted to a density function is to identify the specific 

line j overloads associated with each x MW load level.  Then later in Step 18 (see 

Figure 4.8) the Fp(x,y) are moved across the surface of the x-y plane along a path of 

slope y/x equal to the normal generator-load transmission line j real power 

distribution factor Hj,m-n. 

 

line overload states as shown in Fig. 4.5 

F(x,y) surface as a set of discrete points 
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Step 16. Select the next generator-load pair from the LST to be used in reducing 

the line overloads.  This is an initial step for the load shedding operation.  The 

shifting of flow distributions in the F(x,y) space is the load shedding process.  

Generation-load and line j overloads are simultaneously reduced as a deterministic 

process. 

 

Step 17. Calculate the maximum MW reduction needed for this generator-load 

pair.  The MW needed to unload the line may be less than the generator’s capacity.  

Also, the maximum y line MW shift is limited in order to retain the line j status as 

the line with the highest probability of overload. 
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    0 
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   Figure 4.8  Shifting The Line Overloads To The Generation/Load Axis - x 

 

Step 18. Shift the Fp(x,y) partial distributions as a function of the load shedding 

MW generation and the generator-load distribution factor as shown in Figure 4.8.  

The shifting process folds the distributions from the y axis to the lower x axis.  What 

is happening here is that all the distributions are being shifted down and to the left 

Fp(x,y) 
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with a slope equal to the line real power normalized distribution factor, Hj,m-n.  The 

distributions are not moved beyond the lower x axis (which is also the line j MW 

rating of Rj).  Also the distributions are not shifted beyond what will allow line j to 

have the highest probability of overload.  This process causes the line distributions to 

be ‘folded’ onto the x axis.  The process of shifting these distributions creates the 

load shedding information and this is stored in a temporary array T(x).  The T(x) array 

is then added to the generation reliability FG(x) and reset to zero for the next set of 

line overloads after Step 19. 

 

Step 19. Calculate the incremental changes in FG(x) from shifted Fp(x,y).  The 

incremental distributions in T(x) are added to FG(x) as shown in Figure 4.9 (also see 

Figure 4.1).  This is the additional decrease in reliability caused by the line j 

constraints. 

                         

  1 

 

                            

  Pr 

 

 

  0 

Figure 4.9  Generation Unreliability Due To Transmission Constraints - T(x) 

 

Step 20. Estimate the reduction in loading of other overloaded lines due to the line 

j y MW.  The shifted increments on line j are due to the m-n generation-load pair 

reducing their MW by an amount y/Hj,m-n at a probability p.  Line j overload 

increments are reduced by y MW.  This generator-load pair may be contributing to 

FG(x) 

FG(x)+ T(x) 
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the overloads of other lines l.  Each of these other overloaded lines l will have a 

smaller (but positive) Hl,m-n distribution factor.  All the overloads in the other lines 

are decreased by an amount equal to  (y)(Hl,m-n)(Hj,m-n)
-1

 provided that line j has a 

higher probability of occurrence than the other lines l.  This approximation assumes 

line j overload event(s) are coincident in time with the other line overloads selected. 

 

Step 21. Repeat steps 16 through 21 for each y increment until line j no longer 

has the largest probability of overload.  Repeating these steps allows more entries in 

the LST to participate in the load shedding and line overload reduction process.  

Usually many generators and loads are needed in the load shedding process to 

completely remove all the probabilistic line overloads.  The line overloads tend to 

have extremely small probabilities at very large MW overloads. 

 

Step 22. Repeat steps 10 through 22 until no more lines are overloaded.  After each 

line j is unloaded, and all the other lines l have been adjusted as a result of all the 

lines unloaded up to the line j being unloaded, other lines are usually remaining to be 

overloaded.  A new line j is selected in 10 as a candidate for having its line overloads 

removed.  This process is continued until no more lines with overloads are present.  

With each line being unloaded, the process of adding the T(x) to FG(x) is cumulative.  

Other statistics are collected for each line that is unloaded. 

 

Step 23. Calculate the probability of this transmission configuration and save other 

statistics for this transmission configuration.  The first transmission configuration is 

all lines in service.  Other transmission configurations will have one or more lines out 

of service.  The probability of the individual line outage configurations is conditional, 

based on the amount of transmission probability space examined.  If a group of lines 

in the network are selected for study, the probabilities of all the transmission outage 
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events are made conditional to the outages modeled, such that the total transmission 

outage space probabilities will sum to one.  Chapter 11 shows that the enumeration of 

double simultaneous transmission outage events covers most of the total probability 

space of line outages. 

Step 24. Select a line outage configuration to enumerate or go to Step 27 if all 

desired line outage configurations have been modeled.  Note that the first 

configuration modeled has all lines in service.  Line outages are simulated explicitly.  

There is no direct convolution process that will model incremental probabilistic line 

flows as a result of outaging other lines with probabilistic flows.  So the entire solution 

process is repeated for each specific line outage configuration, and load shedding 

statistics are recorded for each line outage configuration. 

 

Step 25. Test for system separation using complex injection currents.  Chapter 9 

gives the mathematical details for this test.  If a system separation has occurred 

because one or more lines are outaged,  record the probability of this configuration 

and return to Step 24 for a new line outage configuration.  The study of dynamic 

processes due to system separation is beyond the scope of this dissertation. 

 

Step 26. Adjust Hj,k factors for the specific line outage configuration and repeat 

Steps 7-23.  The real power line outage distribution factors are updated through an 

efficient mathematical process described in Chapter 9. 

 

Step 27. Prepare final output reports and end the program run. 
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Chapter 5 

Generation Reliability 
 

    Chapter 1 introduces the idea that present day computational tools are 

inadequate for solving the composite generation-transmission reliability problem.  

Chapters 2 and 4 state that this lack of success is due to a reliance on enumeration for 

testing the extremely large number of generation outage configurations.  Generation 

reliability programs today are successfully using convolution as a means of modeling 

the generation outage events exhaustively for problems with simple radial 

transmission networks (MAREL and GRIP) and no electrical network at all (UCS). 

    The success of the convolution approach for modeling generation outage 

events is retained in this dissertation and is extended to include the full transmission 

network.  To use convolution in a large transmission network model requires linearity 

of line flows in the electrical network as well as a tractable definition of the 

generation reliability.  The discussion in Chapter 4 indicates that proportional LLS is 

consistent with convolution and the uniformity of generation reliability at every bus 

whereas the NLLS is inconsistent with both.  Consideration of LLS versus NLLS is of 

primary importance and is discussed further in this chapter.  This chapter also 

discusses:  the conversion of three state generator data into two state generator data; 

the error of FG(x) compared with FE(x); the definition of generation reliability used in 

this dissertation versus other definitions for calculating LOLP and EUE; and why a 

load model is not explicitly included in the composite G-T model presented here. 

    Figures 5.1a (linear probability scale) and 5.1b (logarithmic probability scale) 

show an example of FG(x), the probability that generation outaged is greater than x MW, 

for the ERCOT 286 generator system.  The total generation is 58,197 MW and a 1% grid 

step size, h=58.197 MW, is used.  The curves in Figure 5.1 have been calculated using 

the PQ convolution mathematics presented in Chapter 3. 
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Figure 5.1a  Probability Outaged MW > x 
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Figure 5.1b  Probability Outaged MW > x 

 3 state generators modeled as 2 state generators 

 3 state generators modeled as 3 state generators 
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 3 state generators modeled as 2 state generators 

 3 state generators modeled as 3 state generators 
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 and Figures 5.1 and 5.2 
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    The PLF computer code used in this dissertation was initially written for two 

state generators.  Code sections with a two state generator model included:  1) the 

convolution of generation outage states;  2) the convolution of line flow states; and  

3) a linear program for minimizing load shedding in enumerated solutions
1
.  Three 

state generator representation has recently been included in section 1), but has not 

been included in sections 2) or 3) listed above.  Three state generator studies cannot 

be run until the section 2) computer code has been updated.  Since the ERCOT data 

contains both two and three state generators, a two state approximation to the three 

state generator data is presently required to run the existing computer program.  A 

two state EFOR from three state generator data has been included in the computer 

code and is shown in Equation 5.1 as 

            EFORk = FORk + DFORk
D

C

k

k

               (5.1) 

where EFOR, FOR, and DFOR per unit values, and Dk is the MW reduction due to 

the derating of generator k from the total generator Ck MW capacity. 

    Because not all sections of the author’s PLF computer program have both two 

and three state generator modeling capability,  two state generators are used for all 

testing examples.  This raises a concern about the error introduced by this conversion.  

Figure 5.1a shows that use of only two state generators did not change the expected 

value of FG(x).  It also shows the variance increased slightly by using the two state 

generators from the three state data.  This results in a larger amount of outaged 

generation for x10% as shown in Figure 5.1b.  The author does not recommend 

using Equation 5.1 as a permanent substitution for a three state generator model.  The 

PLF program will be upgraded to model three state generators in the near future. 

                                                 
1
Enumeration solutions are used to independently verify convolution program results in Chapter 12. 
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    The PQ convolution process produces error as shown in Figure 5.2 for the 

solid curve in Figure 5.1b.  This error is primarily due to interpolation.  The PQ error 

is acceptable for a total of 360 grid increments in the computer program for 

representing the FG(x) PQ distribution.  The selection of 360 increments is not 

unique, and 300, 400, or any other number of increments can be used although 100 

through 1000 increments gives the best results.  PL error is 10 times greater than PQ 

error. 
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Figure 5.2  Per Unit Error of  (FG FE)/FE  in Figure 5.1b for h = 58.197 MW 

 

    After reviewing the error produced by the PQ interpolation process, the 360 

increments case has been selected as a good compromise between computer run time 

and PQ interpolation error.  The 360 increments also conveniently allow the final 

output reports to be listed in one percent steps of installed generation capacity when 

h = 58.197 MW grid step size for this specific ERCOT problem.  Each study problem 

should use an appropriate h > 0 MW grid step size. 
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    The error in FG(x) is difficult to graph as h is varied because the error covers a 

wide range of values.  Plotting the errors of half and double h = 58.197 on the same 

linear graph (error of FG(x) versus x) results in two curves being off scale at the top 

and the third curve near zero at the bottom.  The error cannot be plotted on a log scale 

because the error contains zero and negative values.  An absolute value log plot of the 

error does not appear to be meaningful. 

Table 5.1  PQ Error Vs h MW Grid Increment and Vs x MW Outaged 

 

Outaged 

Capacity 

 

 

FE(x) Exact 

h=1 MW 

 

FG(x) 720 incr. 

h=29.0985 

 

FG(x) 360 incr. 

h=58.197 

 

FG(x) 180 incr. 

h=116.394 

 

10% 

 

 

 

.5400181 

pu error : 

 

.5400144 

-.0000068 

 

.5399837 

-.0000637 

 

.5396498 

-.0006820 

 

20% 

 

 

 

1.708469E-3 

pu error : 

 

1.708888E-3 

.0002452 

 

1.710651E-3 

.0012771 

 

1.722557E-3 

.0082460 

 

30% 

 

 

 

1.069758E-8 

pu error : 

 

1.071004E-8 

.0011647 

 

1.077244E-8 

.0069978 

 

1.125576E-8 

.0521784 

 

    The listing in Table 5.1 has been created to show the wide variation in error as 

h is doubled and halved.  The dots in Figures 5.1a, 5.1b, and 5.2 are from the data 

listed in Table 5.1 and are shown for ease in cross referencing this table to the other 

figures.  The error data in Table 5.1 is plotted in Figure 5.3 as a function of the h grid 

increment size for x = 20% and 30%.  The change in error with respect to h is very 

nearly a cubic function of h.  This allows very low errors to be achieved with PQ for 

finite values of h.  The PL interpolation error is plotted and is much greater [34]. 
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Figure 5.3  PQ Error - A Cubic Function Of h MW Grid Spacing 

 

Load Model Representation Using FG(x) 

    FG(x) is the probability outaged generation will exceed an x amount of MW.  

Since the MaxGen configuration load MW is set equal to the total generation MW, 

the amount of unserved MaxGen load is identically equal to the x amount of 

generation randomly outaged.  Reversing the x axis of FG(x) shows more clearly in 

Figure 5.4 the amount of load that can be served and the load that cannot be served as 

a function of FG(x). 

 

 

               Load Served                     FG(x) 

                         Load Not Served 

 

      0 MW            MW Load          MaxGen MW 

Figure 5.4  Load Served (Not Served) By Random Generation 

1 hr 

PQ  x = 30% 

PQ  x = 20% 

PL  x = 30% 
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    For other load levels below the MaxGen configuration load, the area under the 

tail of the FG(x) function gives the amount of energy not served, which is the EUE.  

Figure 5.5 shows the load not served for a load level of y MW. 

 

 

                       

                                          FG(x) 

                     EUE = Load Not Served    x     

 

    load y=0       increasing x    increasing y        y  genr x=0 

x + y = Ck
k

Ng

 1
 

Figure 5.5  Load y Not Served By Random Generation Outages 

 

    The best indicator of reliability is the expected unserved energy, or rather the 

EUE(x) as a function of the load y MW.  In Figure 5.5, the EUE(x) is the integral of 

FG(x) from x to  or the EUE(y) is the integral from 0 to y.  Note that this is the same 

FG(x) function, only the x and y axes are reversed.  The EUE is used to cover a one 

hour period in this dissertation.  Frequently the EUE is calculated for an entire year, 

which includes all the operational data such as generator and line maintenance 

schedules and hourly loads, but the transmission system reliability is best measured at 

the highest load level in which there is no scheduled maintenance.  Limiting the 

analysis to peak load periods simplifies the data gathering process and allows the user 

to study the primary problem rather than be burdened by less important data.  

Therefore, the author has elected to calculate the transmission system reliability and 

the transmission system’s effect on generation reliability only at the peak load 

periods. 

 

1 hr 
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    FG(x) is the distribution function describing the generation availability for the 

total system. This single area FG(x) definition of generator supply reliability is 

extended to mean the relative generation reliability at every load bus in the network.  

This is a physical interpretation of the system, in which the network is constrained by 

the total generation supply and its randomness of outages and by the ability of the 

transmission system to deliver power.  Loss of load due to generation outages is to be 

shared proportionately on all load buses in this model.  Another way of stating this is 

to say that every bus has the same electrical network opportunity of receiving power 

if no transmission constraints exist.  This definition is called load-loss-sharing and its 

use allows a straightforward approach to solving the composite generation-

transmission reliability problem.  The LLS methodology was described in Chapter 3. 

    The LLS approach provides a framework for uniquely defining bus loads 

under generation outage conditions.  The LLS simply calls for a uniform and 

proportionate load reduction across the network to balance the total power 

requirement when generation is outaged.  Figure 5.6 is a picture attempting to convey 

the idea that a simple linkage exists between generation and load.  A reduction in 

generation leads to a corresponding load shedding in the load flow.  Applying the 

load shedding uniformly across the network for all generator outage states produces a 

load distribution very nearly the same as FG(x) with its x axis reversed.  The 

incremental changes in the network line flows can be calculated as all the generation 

outages are occurring.  Because the generation and load are scattered across the 

network, the incremental line flow distributions that result are quite different from 

the generation and load distributions.  The probabilistic loading of the lines provides 

a test of the ability of the transmission system to deliver the available generated 

power. 
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    Generation         Transmission          Load 

 

 

              generation states define max loads 

 

     generation                         load 

Figure 5.6  Relationship Between Generation And Served Load 

 

    Other load models can be constructed in which the mathematical formulation 

is too complex to be modeled using the convolution method.  Chapter 4 described the 

no-load-loss-sharing method as being one in which the convolution method is not 

applicable.  This is because the power from outaged generators cannot be directly 

linked to specific load buses using NLLS.  The NLLS solution itself is not unique.  

For example, the NLLS method allows surplus generation to be used by load areas 

needing capacity, but it fails to specify how the surplus capacity is to be allocated.  

Numerical examples are given to illustrate the NLLS problems. 

    Three areas, A, B, C, have loads of 90, 100, and 110 MW respectively.  Each 

area has two 75 MW generators for a total network capacity of 450 MW.  If area A 

loses a generator then it will need 15 MW from one of the other areas.  Which area?  

The choice is arbitrary.  An infinite number of possibilities exist in this example with 

no load shedding.  The solution is not unique. 

    Continuing with a second example: let area A lose two generators and area B 

lose one generator.  Area A needs 90 MW and area B needs 25 MW.  Area C has 40 

MW spare capacity but the allocation of this 40 MW to A and/or to B is not defined.  

The split could be proportioned using ratios of unserved load to total unserved load, 

or by area load to total load, or by capacity outaged to total capacity outaged, or by 
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order of occurrence of outaged generation, or by any other means the areas have 

agreed to use.  The selection of the proper NLLS methodology based on criteria such 

as social, financial, and/or political objectives is clearly beyond the scope of this 

dissertation.  In this last example, the LLS method gives each area 75% (225/300) of 

the total area requirement, which is 67.5, 75, and 82.5 MW respectively. 

    Solutions for the above examples have not yet been fully defined in the real 

world.  These kinds of load sheddings and generation allocations will soon be under 

the control of an Independent System Operator in each region.  The new operational 

rules for the ISO are still under consideration at this time.  Not knowing the specific 

rules by which an NLLS methodology will operate eliminates the possibility of using 

NLLS within the context of the convolution method in this dissertation. 

    The last item for discussion in this chapter is the lack of specifying a set of 

loads in the PLF model.  Two convolution approaches are commonly used.  One way 

is to start with an equivalent load duration curve (ELDC) [34] and then convolve 

generation states into that load curve.  This is the Booth-Baleriaux method [48] and is 

widely used in production costing programs.  Initially all the load under the ELDC is 

unserved energy.  Each generator convolved into the ELDC reduces the amount of 

unserved load.  The residual ELDC after all generators are convolved is used to 

calculate the LOLP and EUE. 

    The second approach is to convolve all the generator states together to 

develop either a capacity availability distribution or a capacity outage distribution.  

The LOLP is found by looking up the probability of being able to serve the peak load 

level.  Likewise, the total unserved energy is calculated by summing all the one hour 

EUE’s as calculated in Equation 3.17 for each hour.  For production costing, the 

ELDC method and the convolved generation states processes are equivalent, although 

their computational speed may be slightly different. 
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    However, in the composite G-T problem presented here, the ELDC approach 

cannot be used for two reasons.  First, the use of ELDC for a multi-area problem 

corrupts the time coincidence of hourly load information.  This will make the ELDC 

approach give incorrect results.  To overcome this problem in the GRIP program, a 

set of weekly ELDC are used to regain some of the time coincidence.  The method 

selected in this dissertation only looks at the system during peak load conditions and 

assumes that the network loads are in proportion to the generation capacity owned. 

    The second reason ELDC cannot be used is because there is no direct and 

simple calculation procedure for calculating line flows in the network when a 

generator is outaged (as in Figure 5.6).  There may be a convolution procedure to 

calculate the line flows when using ELDC loads, but it does not yet exist, and it will 

probably be more complicated and harder to understand than this model. 

    A third, and softer, reason the ELDC approach is not desirable has to do with 

the way transmission planners view the system.  Transmission planning engineers are 

interested in testing the transmission system under peak loading conditions because 

this drives their recommendations for new system (capacity) improvements.  

Therefore, the PLF model in this dissertation has been designed to accommodate their 

viewpoint by testing the reliability of the generation and transmission systems during 

peak load hours.  The approach taken here allows the load level to be looked up in a 

tabular form long after the computer runs are completed.  Since the load level is not 

part of the input data, the study results are not affected by how the load data has been 

entered, thereby making the study results more robust and applicable over a wider 

range of loads than a study that has been run for a specific set of loads. 
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Chapter 6 

Load Flow Solution 
 

    An AC
1
 load flow solution is used in the PLF model to solve the MaxGen  

load flow and a load flow solution for each outaged generator.  Each generator 

outaged provides a means of calculating incremental real power flow in each line, 

which is used to calculate the real line power distribution factors Hj,k [1,29,55]. 

    The load flow is an electrical network solution used primarily by the electric 

utility industry in which load power and generation power requirements are specified.  

Additional operating constraints are also specified, such as generator reactive limits 

and autotransformer tap range limits.  Voltage is controlled by adjusting generator 

reactive powers and by adjusting autotransformer taps.  Slack and swing real power 

generation is adjusted to meet real power requirements within each control area and 

for the total system respectively.  Since losses are nonlinear, an iterative solution 

procedure is required in which successive corrections are made to the bus voltages.  

These bus voltages are used to calculate transmission line and transformer power 

flows that are compared with bus shunt requirements of load and generation.  The 

differences are real power P and reactive power Q mismatch at each bus.  The 

vector of power mismatches are used in a matrix solution to calculate small 

corrections to the bus voltage angles V and bus voltage magnitudes VM. 

 

The Jacobian Solution 

    One of the most popular solution techniques utilizes the Jacobian [J ] real 

number matrix solution as shown in Equation 6.1 and in [68,69]. 

                                                 
1
 AC means the network has complex line impedances, complex voltages, and complex loads. 
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              (6.1) 

    Frequently the [J12] and [J21] matrices are omitted in the use of Equation 6.1. 

This decouples the real and reactive power solutions.  It also saves a considerable 

amount of matrix fill that occurs in the sparse matrix solution when [J12] and [J21] are 

present.  This decoupling improves solution speed but leads to solution difficulties if 

lines have high R/X ratios.  The Jacobian sometimes has difficulty starting from a flat 

start in which the voltages are far from the final solution.  This may result in an early 

voltage collapse or infeasible solution.  The Jacobian solution may have a premature 

voltage collapse in electrical networks that are difficult to control the voltage or are 

operating near a maximum power transfer limit (MaxGen load flow conditions). 

    Another problem with the use of Equation 6.1 is the need to convert polar bus 

voltages into rectangular bus voltages to calculate line currents.  This is time 

consuming computationally and adds some additional solution error.  Load flow 

solution error is critical in the PLF model because errors can be cumulative.  The use 

of real*4 voltages
1
 in Equation 6.1 will not work reliably here.  Real*8 bus voltages

1
 

are needed to achieve bus convergence tolerance of better than .01 MVA. 

 

New Matrix Solution 

    With these deficiencies in mind, a new load flow solution technique has been 

designed that: 1) executes about as fast as the Jacobian computationally; 2) has much 

better solution stability than the Jacobian; and 3) provides much better solution 

accuracy.  The new method simultaneously uses two interleaved sparse matrices to 

better control real and reactive powers and their effects on incremental voltages.  A 

new form of bus voltage using three numbers instead of two allows both polar and 

                                                 
1
 Single precision is real*4 with 7 decimal digits; double precision is real*8 with 16 decimal digits. 
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rectangular voltages to be represented at the same time without the use of 

computationally inefficient trigonometric conversions.  The new method of 

representing the voltage at bus i is shown in Equation 6.2. 

 

        VMi VAi   =  VMi Vi  =  VMi [cos(Vi) + j sin(Vi)]        (6.2) 

 

    In Equation 6.2, real number angles Vi have been replaced with complex 

number angles VAi.  A necessary property of VAi is that its magnitude is always unity.  

VAi contains the complete angle information as a complex number and is much faster 

for a computer program to use in calculating line flows.  VAi is the rectangular form 

needed to calculate line flows.  Angle additions in the new PLF matrix solution(s) are 

performed as complex number multiplications. 

    An initial load flow solution begins with all voltages set to desired values of 

per unit voltage.  Regulated voltage buses are specified with voltages to be held 

constant by adjusting transformer taps or generation reactive power.  Unregulated 

buses may be set at nominal initial values such as 1.00 per unit.  The initial load 

flow solution iteration should have only an angle calculation while holding bus 

voltages constant.  The power error is greatly reduced before introducing voltage 

adjustments.  This avoids the first iteration flat start Jacobian divergence problem. 

               [(P, j0)] =  [Y ][V ]                  (6.3) 

       [VAi  =  VAi  (1.D0 + Vi ) / CDABS(1.D0 + Vi ) ]   i=1, Nb   (6.4) 

    An approximation to the decoupled Jacobian equation [P] = [J11][V] is 

shown in Equation 6.3.  [Y ] is an approximation to [J11].  Equations 6.3 and 6.4 are 

used together to provide all the load flow bus power angle calculations.  Real*4 [Vi] 
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and real*8 [VAi] are complex bus voltage vectors.  [Y ] is an nn real*4 complex 

sparse nodal admittance matrix.  1.D0 is a FORTRAN
1
 double precision 1.0 number, 

and CDABS is the FORTRAN routine for finding a complex double precision 

absolute value number.  [Y ] is composed only of complex R+jX transmission line 

impedances in per unit
2
.  [Y ] contains no shunt admittances except a single low 

resistance (<10
-10

 pu ohms) at the system swing bus.  [P] is the vector of real powers 

summed into each bus.  The sparse matrix technique in [97] is used to solve Equation 

6.3.  The solution using [97] has three steps: simulation; reduction (factoring); and 

solution.  The simulation and factoring of [Y ] is performed once.  The solution phase 

of Equation 6.3 is repeated with each load flow iteration using a new set of [P] to 

find a new set of [V ].  The new Vi terms are used in Equation 6.4 to provide angle 

corrections to VAi. 

    Equation 6.4 shows FORTRAN
1
 double precision functions because they are 

critical to the proper update of the bus VAi real*8 complex voltage angles.  Here is a 

brief explanation of how Equation 6.4 works.  Vi is a very small (magnitude of 10
-1

 

to 10
-16

) real*4 incremental complex voltage.  The imaginary component of Vi 

contains angle rotation information to be applied to VAi as shown in Figure 6.1. 

 

 

 

                                imaginary Vi 

                           VAi   real Vi 

                 0              1 

Figure 6.1  Imaginary Vi Converted To Angle VAi 

                                                 
1
 These FORTRAN statements must be constructed as shown or the 16 digit accuracy in the calculation 

will be rounded to 8 digits. 
2
 All internal calculations are on a 1 MVA basis; one pu amp times one pu volt is one MVA. 
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    The FORTRAN real*8 double precision 1.D0 constant is added to Vi . This is 

necessary to retain the original precision of Vi .  An angle rotation vector is created 

as shown in Figure 6.1.  The delta angle vector is normalized in the operation (1.D0 + 

Vi ) / CDABS(1.D0 + Vi ) and then multiplied times the unity real*8 complex angle 

VAi.  The CDABS FORTRAN function is required in the denominator in Equation 6.4 

to retain the full 16 digit accuracy in the normalization of the 16 digit rotation vector 

(1.D0+Vi).  All the above statements are necessary to retain solution precision. 

    The second step in the new load flow solution method is to perform a voltage 

magnitude correction calculation.  Equations 6.5 and 6.6 are used to correct the [VM]. 

              [(P, jQ)] =  [Ys][V ]                (6.5) 

              [VMi  =  VMi + Real(Vi )]   i=1, Nb          (6.6) 

    An approximation to the decoupled Jacobian equation [Q] = [J22][VM] is 

shown in Equation 6.5.  [Ys] is an approximation to [J22].  Equations 6.5 and 6.6 are 

used together to provide the new voltage magnitude estimates on unregulated buses.  

Real*4 Real(Vi) and real*8 real VMi are incremental magnitude and total magnitude 

bus i voltages respectively
1
.  [Ys] is an nn real*4 complex sparse nodal admittance 

matrix that is identical to [Y ] in every way except for the many shunt elements that 

are added to [Ys].  [Ys] additional shunt admittances are: 

 2  constant conductance of bus shunt MW, 

 2  constant susceptance bus shunt MVAR, + capacitive,  inductive, 

 2  half the total line charging susceptance in MVAR, 

 autotransformer voltage regulated buses with shunts >10
10

 pu mhos, and 

 generator voltage regulated buses with shunts >10
10

 pu mhos. 

                                                 
1
 Note that [P] and [Q] are to always be recalculated as summations of all real and reactive flows 

into each bus before using either Equation 6.3 or 6.5 and that the sign of complex power is defined from 

P+jQ = VI
*
. 
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    The 2  factors arise from the derivative of the bus voltage squared terms on 

the constant admittance shunt elements.  For any bus i in the network with shunt 

reactance Bi (+capacitive, -inductive), the reactive power Qi supplied by the shunt 

reactance is Qi = Bi VMi
2
, (all variables are real numbers).  The change in reactive 

power through the B shunt admittance with respect to voltage magnitude is obtained 

by taking the derivative so that Qi = 2Bi VMi .  The incremental voltage is related to 

the incremental power as   VMi  = [2Bi]
-1
Qi .  Thus, the factor of 2 is needed to 

provide the proper relationship between incremental voltage and reactive power. 

    The regulated buses are grounded through very small resistances (10
-11

 ohms) 

to hold the regulated bus voltage changes to nearly zero volts when solving Equation 

6.5.  This provides a means of absolute control on the voltage regulated buses.  In 

order to reach a solution using Equations 6.3 through 6.6, other adjustments must be 

made.  Because autotransformer voltages are held rigidly fixed, the taps must be 

adjusted with each iteration to account for reactive power mismatch on the regulated 

bus.  This is an external operation not affecting the matrices [Y ] and [Ys].  The same 

is true for regulated generation buses in which the reactive power produced must be 

adjusted to account for reactive power mismatch.  In the course of iteratively solving 

Equations 6.3 through 6.6, transformer taps may exceed their limits, and generator 

reactive capability may exceed their reactive limits.  When this happens the [Ys] 

matrix may need to be reformulated ungrounding the regulated buses so that the 

previously regulated buses are now unregulated and can seek their own voltages 

levels.  These previously regulated buses are unregulated because their regulating 

devices fail to have enough range to control the bus voltages.  Also during the 

iterative process, real power sources and/or loads must be adjusted as slack 

generation in each area to account for real power losses.  Power correction at the 

system swing bus is not necessary if every area’s slack generation is properly set. 
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    Equation 6.5 gives excellent performance for voltage correction because it uses:  

1) both real and reactive power mismatch,  2) both real and reactive line impedances in 

their correct form as complex values,  3) both real and reactive shunt admittances in their 

correct form as complex values, and  4) absolute control over the regulated bus voltages. 

    Frequently the data submitted by utility engineers have subtle errors.  One 

common error is the specification of individually regulating the voltage of two buses 

connected by a very low impedance line.  If this occurs, the load flow program should 

respecify all regulating devices to control a single bus and let the others be 

unregulated as shown in Table 6.1.  Otherwise the solution may result in two voltage 

controlling devices fighting each other.  Additional computer code is usually required 

to coordinate the tap changing of several autotransformers in parallel or 

autotransformers trying to regulate the same buses as generators.  There may be an 

infinite number of possible solutions of reactive power settings and tap settings that 

are all feasible, although there is usually a best solution based on other requirements. 

    Table 6.1 shows a typical load flow solution using Equations 6.3 through 6.6 

for a 2231 bus ERCOT load flow test case.  The computer runs show two regulated 

buses reassigned to avoid a conflict in regulating the voltages of buses connected by 

(almost) zero impedance lines.  The maximum sparse matrix size is 10915 complex 

numbers and after factoring the matrix using bi-factorization [97], the final matrix 

size is 10047 complex numbers.  The simulation and factoring process required only 

two seconds on a pentium 75 MHz PC using [97]. 

    The solution in Table 6.1 is a MaxGen configuration load flow run in which the 

load is scaled upward to match the installed generation of 58197 MW.  The printout 

shows 147 power plant buses in the load flow, although 286 generators in the case can 

have random outages.  Many load flow buses have more than one generator.  The load 

flow solution starts with a flat start, and the Table 6.1 largest power mismatches 

initially are 2271 MW at bus 1900 and 1139 MVAR at bus 4234. 

 



 

 101 

Table 6.1  Example Of Load Flow Solution Convergence Using New Method 

 Load Flow Solution Monitor: 

  

 Number of buses       =      2231      5500 max 

 Number of generators  =       147 

 Number of circuits    =      3092      6500 max 

 Number of xformers    =       553      1200 max 

 Number of areas       =         9        20 max 

 Swing Bus             =      4546 

  

 Read load flow data   =   0h  0m  3s 

  

 regulated bus 6235 reassigned to bus 6230 

 regulated bus 6444 reassigned to bus 6443 

  

 Matrix factoring time =   0h  0m  2s 

 Matrix initial size   =     10915     20000 max 

 Matrix final size     =     10047 

 

 ************************************* 

 * Generation is at maximum capacity * 

 * Bus loads have been scaled upward * 

 * Area interchanges have been reset * 

 * Generator Qmn/mx is now unlimited * 

 ************************************* 

 

 load flow solution monitor ... 

 iter  0   bus 1900  perr=   2271.01   bus 4234  qerr=   1138.74      0.11 sec 

 iter  1   bus 5915  perr=    113.54   bus 4234  qerr=    854.87      0.33 sec 

 iter  2   bus 1409  perr=     38.27   bus 4488  qerr=     39.49      0.27 sec 

 iter  3   bus 1409  perr=     15.45   bus 8441  qerr=     13.70      0.22 sec 

 iter  4   bus 1409  perr=      3.27   bus 1032  qerr=      3.43      0.22 sec 

 iter  5   bus 8442  perr=      0.47   bus 8441  qerr=      1.89      0.33 sec 

 iter  6   bus 8442  perr=      0.25   bus 4726  qerr=      0.61      0.27 sec 

 iter  7   bus 8442  perr=      0.08   bus 4726  qerr=      0.27      0.27 sec 

 iter  8   bus 8442  perr=      0.04   bus 4726  qerr=      0.12      0.22 sec 

 iter  9   bus 6480  perr=      0.01   bus 4726  qerr=      0.05      0.33 sec 

 iter 10   bus 6480  perr=      0.01   bus 4726  qerr=      0.02      0.22 sec 

 iter 11   bus 4548  perr=      0.00   bus 4726  qerr=      0.01      0.27 sec 

 iter 12   bus 4548  perr=      0.00   bus 4726  qerr=      0.00      0.22 sec 

 

 a load flow solution has been found 

 iteration time        =           3 sec 

 total load flow time  =          10 sec 

 

 discussed in the text 
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    The first iteration includes solving Equations 6.3 through 6.6 and the power 

mismatches drop to 114 MW and 855 MVAR.  The solution continues until both real 

and reactive mismatches are less than .01 MW and .01 MVAR at all buses in the 

network.  The new matrix solution process is capable of solving this load flow down 

to a tolerance of P=1 Watt and Q=1 VoltAmp, but this requires 31 iterations. 

    A popular commercial program used to perform ERCOT load flow studies 

will sometimes fail to converge at the .1 MVA maximum bus mismatch level.  This is 

due to the representation of substation buses as short transmission lines at power 

plants and major switching stations in the ERCOT system.  The ERCOT engineers 

need to be able to see the internal flows within substations to see if breakers and 

switches have currents exceeding ratings.  However, the extremely small voltage drop 

across these very short lines is not captured properly by the single precision bus 

voltages used in this commercial program. 

    In the example shown in Table 6.1 there is no matrix reformation because all 

reactive and tap changing limits are ignored.  A ‘normal’ load flow run representing a 

seasonal load level will typically have one instance of matrix reformation and a total of 

eight iterations.  If the MaxGen configuration load flow shown here is run with the 

voltage controlling constraints fully applied, low voltages will occur, and possibly 

voltage collapse will occur.  This MaxGen configuration load flow is a difficult case to 

solve because the load level is far beyond what has been planned and insufficient reactive 

power for voltage support may be a problem.  The convolution requirements of linearity 

and a MaxGen configuration load flow condition forces the acceptance of running this 

case with voltage controlling device constraints eased.  The fact that such a case does 

converge shows that, if sufficient reactive capacity is installed in the real system, then it 

could support the higher loads.  Therefore, the additional reactive support assumption is a 

reasonable simplifying assumption for the scope of this dissertation topic. 
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Chapter 7 

Line Distribution Factors 
 

    As each generator is outaged, the transmission line real power flows 

throughout the network change.  These incremental changes in power flows provide a 

unique description of how power was being delivered from the generator to all the 

loads before the generator was outaged.  The purpose of this chapter is to show how 

these incremental flows are converted into line distribution factors Hj,k  [1,29,55], 

how they are stored in the computer, and how they are linearly combined to predict 

new incremental line flows not calculated explicitly by a load flow solution. 

 

Methodology 

    The MaxGen configuration load flow has all lines and generators in service, 

and loads are at maximum levels possible.  If a single generator fails to run, the 

network load is reduced to match the remaining available generation.  This will cause 

an incremental change in transmission real power flows throughout the network.  

Each generator individual failure will cause a set of incremental line real power flows 

and a reduction in total system load and real losses equal to the generation amount 

outaged. 

    Suppose two generators at the same load flow bus are outaged at the same 

time.  The network incremental real power line flows are nearly the same as the sum 

of the individual incremental real power line flows from each generator being 

outaged.  They are the same if incremental losses are linear.  Therefore, any two 

generators outaged in the network anywhere create incremental line flows that are 

nearly the sums of the individual incremental real power line flows caused by the two 

outaged generators if incremental losses are linear. 
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    If this process were truly linear, the sums of all the incremental flows of all 

the generators could be used to sum all the incremental flows on all lines and the 

MaxGen configuration base case real line flows will be created.  It is not true, but it is 

almost true.  Table 7.1 shows the error differences between the actual MaxGen 

configuration load flow line MW flows for 42 of the most heavily loaded lines and 

the total MW line flows created by summing incremental flows for the 286 generator 

ERCOT case.  The incremental flows are summed as +flows and flows, and these 

are added to make the total MW column.  The MW error compared to the actual 

MaxGen configuration load flow is shown.  The last column shows the percentage the 

dominant + or  flows must be scaled to make the error go to zero. 

    Table 7.1 is a sample of the 3000+ lines in this case.  The lines listed have 

some of the highest MW loading in the MaxGen configuration load flow case.  Lines 

such as generator step-up transformers with flows in only one direction have been 

omitted because they have almost zero error.  The more interesting lines with flows in 

both directions are listed in Table 7.1. 

    The last column of Table 7.1 is a set of scale factors.  Each line has a unique 

scale factor to make the sum of incremental flows equal the actual line flow.  This 

scale factor is only applied to the incremental flows in the dominant direction.  The 

dominant flow direction is the direction with the largest sum of incremental flows.  

For example, the first line in Table 7.1 has a dominant flow of 1552.4 MW.  

Applying the reduction of 0.8% to all negative incremental flows for this line reduces 

the negative flow sum to 1540.0 MW.  Then 737.11540.0 = 802.9, which is the 

actual MW flow in the MaxGen configuration load flow case for this line. 
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   Table 7.1  Summation Error And % Correction Of Incremental MW Flows 

  LINE  FROM   TO  (+FLOW) + (-FLOW) =  TOTAL   ACTUAL  ERROR   SCALE 

         BUS   BUS    MW       MW        MW       MW      MW      % 

  1391  3390  4401   737.1  -1552.4   -815.3   -802.9  -12.4   -0.8 

  1038  2398  2428  1214.7  -2016.5   -801.8   -802.2    0.4    0.0 

  3084  9073  9074  1449.3   -810.0    639.3    639.8   -0.5    0.0 

  1087  2437  2453  1030.2   -409.4    620.8    624.8   -4.0    0.4 

   822  1873  1890   272.9   -869.5   -594.3    596.6   -2.2   -0.3 

  2550  7040  7056   963.8  -1564.3   -600.5   -594.1   -6.4   -0.4 

   823  1873  1900   177.5   -757.4    581.3   -579.9    1.4    0.2 

   598  1436  1853  1183.7   -627.5    556.2    558.8   -2.5    0.2 

   853  1900  1902  1326.6   -784.1    542.5    558.6  -16.0    1.2 

   849  1890  1932   915.1   -366.9    548.2    552.7   -4.4    0.5 

   728  1690  2373   756.2   -205.6    550.6    547.8    2.8   -0.4 

   601  1436  1900   674.9  -1229.3   -554.4   -545.8   -8.7   -0.7 

  1046  2406  2420   672.4  -1213.2   -540.8   -541.8    1.0    0.1 

   742  1695  1697   713.4   -186.2    527.2    538.5  -11.3    1.6 

  1242  3100  3103   842.3   -309.6    532.7    533.1   -0.5    0.1 

   745  1695  2466   633.6   -115.9    517.7    526.1   -8.4    1.3 

  1045  2406  2407   877.1   -357.2    519.8    522.8   -2.8    0.3 

  1621  4112  4383  1519.6   -991.5    528.1    521.3    6.8   -0.4 

  1396  3391  4401   479.0   -971.6   -492.6   -498.2    5.6    0.6 

  1071  2428  4401  1312.2  -1813.1   -500.9   -496.7   -4.2   -0.2 

  1072  2428  4401  1312.2  -1813.1   -500.9   -496.7   -0.2   -4.2 

  1243  3100  3105   675.3   -181.7    493.6    496.7   -3.1    0.5 

  1666  4192  4714   738.8   -243.1    495.7    496.1   -0.4    0.1 

  1390  3390  3409  1568.7  -1055.5    513.2    495.8   17.4   -1.1 

   891  1930  1932   406.6   -896.3   -489.7   -495.7    6.0    0.7 

  1078  2432  2433  1809.1  -1304.0    505.1    492.3   12.8   -0.7 

   862  1907  1911  1115.0   -633.2    481.8    481.0    0.8   -0.1 

  1751  4356  4488   315.3   -784.3   -469.0   -474.0    4.9    0.6 

  1752  4356  4488   315.3   -784.3   -469.0   -474.0    4.9    0.6 

  1246  3100  3138   541.4    -69.2    472.2    473.7   -1.4    0.3 

  1420  3409  3414  2416.6  -1960.0    456.6    470.4  -13.8    0.6 

   584  1425  6100   521.7   -971.1   -449.4   -456.5    7.2    0.7 

  1820  4675  4676   499.4   -943.7   -444.3   -455.4   11.2    1.2 

   854  1902  1907  1242.0   -800.3    441.7    454.2  -12.5    1.0 

   744  1695  2461   567.3   -120.5    446.8    452.5   -5.7    1.0 

  1127  2461  2468   780.4   -341.1    439.3    449.3  -10.0    1.3 

  1070  2428  3123   559.7  -1010.1   -450.4   -445.8   -4.5   -0.5 

  1245  3100  3115   828.5   -386.3    442.2    443.0   -0.7    0.1 

  1622  4112  4470  1118.8   -673.9    444.9    441.4    3.4   -0.3 

   821  1873  1880  1232.3   -805.9    426.4    438.7  -12.3    1.0 

   868  1911  1913  1075.4   -639.7    435.7    435.4    0.2    0.0 

  1138  2466  2467   549.4   -119.1    430.3    434.1   -3.9    0.7 

Magnitude Averages:                                      5.7 MW 0.64%  



 

 106 

    The average of the absolute value of all scale factors for this 286 generator 

system is 2.22%.  Many of the larger scale factors are lines not carrying much power.  

To better measure the overall error in terms of heavily loaded lines, the absolute 

value of all scale factors was weighted according to real power flow with respect to 

the sum of the absolute value of real power flows on all lines.  The weighted error is 

0.97% for a solution tolerance of .01 MW/MVAR.  The system appears to be fairly 

linear in power.  The linear combination of incremental flows associated with 

specific generators seems to be a feasible approach. 

   The solution tolerance was adjusted to see its effect on the average weighted 

error.  With a tolerance of 0.1 MW/MVAR the error is 0.98%, almost no change.  

With a tolerance of 1.0 MW/MVAR the error is 1.19%.  With a tolerance of 10 

MW/MVAR, the average weighted error is 5.06%.  This seems to indicate that a 

tolerance of .01 MW/MVAR is not necessary.  These averages are misleading 

however.  The cumulative error of adding the incremental flows from 286 load flow 

cases is itself a random variable.  A few lines might have a substantial error due to a 

load flow solution error bias.  To illustrate how this cumulative error could occur, let 

a line l have a MaxGen configuration base case flow of P+ where P is the correct 

solution and  is a small error.  Let i = 1...Ng generators be outaged one at a time with 

incremental flows Ii+(r) in line l where r is assumed to be a uniformly distributed 

random error in the solution of the incremental line l flow cases.  The total expected 

flow is the sum of the differences or (Ii+(r)P+).  The best we can hope for is to 

have the r random errors sum to zero and drop out.  If this is the case, we are still 

left with a possibly large Ng error because the line flow sum is now  Ii 

(PNg)+(Ng).  The  error has been magnified Ng times due to the base case error.  

If the r did not sum to zero as assumed, the error could be even larger, depending on 

whether the r sum adds to or subtracts from to the Ng error.  The load flow 

solution errors must be reduced as much as possible. 
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    In reviewing the sum of line flows from incremental generator outage flows in 

the 286 generator case, only a few lines are observed to have cumulative solution 

errors.  Lines 2460 and 3002 have the maximum MW error on the 1.0 MW/MVAR 

tolerance load flow solution.  These are good candidates for illustrating the MW error 

as a function of the load flow solution tolerance.  Figure 7.1 shows the MW error for 

these two lines in the 286 generator case as solution tolerance is adjusted. 

0.001

0.01

0.1

1

10

100

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

Load Flow Solution Tolerance - MW/MVAR

S
u

m
 o

f 
In

c
re

m
e
n

ta
l 
F

lo
w

s
 E

rr
o

r 
- 

M
W

Line 2460

Line 3002

Figure 7.1  An Example of Load Flow Solution Error Versus Solution Tolerance 

 

    The dashed line in Figure 7.1 is a better description of the line 3002 error 

versus solution tolerance.  The dip in error is probably due to the accidental 

cancellation of base case solution error and sum of incremental flows error.  No other 

lines were observed to have this dip to almost zero error.  Most lines have an almost 

flat MW error between .01 and 0.1 solution tolerances suggesting that possibly 0.1 

MW/MVAR error is acceptable.  The 1 MW/MVAR tolerance did produce a large 

amount of error in many lines and is not recommended.  The .001 MW/MVAR 

solution tolerance did little to reduce error further from the .01 tolerance and is 

probably not necessary.  Since there is little difference in run time between .01 and 
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0.1 MW/MVAR solutions, there is little penalty in choosing the conservative solution 

tolerance of .01 MW/MVAR for all load flow solutions.  This improves linearity 

which allows the sum of all incremental flows to be nearer to the MaxGen 

configuration flows. 

    The process for calculating and storing all the incremental real power flows 

will now be explained in more detail.  The incremental power flows from individual 

generators are used extensively in the process of solving for line flow probabilistic 

distributions.  Real generator incremental line flows and virtual generation 

incremental flows are discussed along with the computer and solution requirements. 

 

Real Generators 

    Using the MaxGen configuration load flow as a reference case, each generator 

is outaged one at a time.  Each generator outaged load flow case is modified from the 

MaxGen configuration case by removing the outaged generator from the case and 

uniformly scaling down the bus loads across the network to account for the removed 

generation capacity.  In these special load flow solutions, 1) autotransformer taps are 

held constant, 2) generator reactive is unlimited, 3) total network load is scaled 

uniformly to act as the power slack generator, and 4) solution tolerance is held to .01 

MW and .01 MVAR. 

    The purpose of outaging each generator is to develop a set of Hj,k power 

distribution factors for all k=1...Ng generators and all j=1...N t transmission lines. 

These are the per unit change in power flow in each line j as a result of loss of 

generator k.  Any single Hj,k factor is calculated by subtracting the outaged generator 

k MW flow on line j from the corresponding MW flow in the MaxGen configuration 

load flow and dividing that difference by Ck .  This is repeated for all lines j for each 

generator k. 
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    Because the total size of Hj,k is large
1
, the j=1...N t line flows are written to 

disk storage as they are created for each new generator k.  The disk file these factors 

are written to is a random access binary file called H.  Each record k in file H 

corresponds to generator k.  If H is viewed as a matrix, the rows are individual 

generators, and the columns are individual transmission lines. 

    Once all line distribution factors have been calculated and stored in H, these 

factors need to be adjusted so that the sums of all incremental flows on each line will 

sum to the MaxGen configuration line flows.   However, before the adjustment can 

begin, a new file called H
T
 is created, which is the transpose of H.  Since the PLF 

program will be accessing the Hj,k factors on a line by line basis, the random access 

file needs to be accessible on the same basis.  The H
T
 rows are line data and the 

columns are generators.  Reading record j from H
T
 gives immediate access to all the 

distribution factors for line j.  Without the H
T
 file, the PLF computer run time could 

be increased by several hours. 

    As each record of H
T
 is read, incremental flows are partitioned into positive 

and negative sets for each line where positive is arbitrarily one direction for the line 

and negative is the opposite direction.  The sum of all incremental flows on each line 

will not sum exactly to produce the MaxGen configuration real power line flows.  For 

each line, the directional incremental flows in the direction that is dominant are 

scaled by a real number multiplier so the sum of all flows will exactly yield the 

MaxGen configuration flows on each line.  The adjusted distributions are written 

back to H
T
. 

    An example of this scaling process is shown in Table 7.1.  Experience shows 

that the scaling corrections are small for lines that are heavily loaded, about one 

percent weighted average for the 286 generator system and about one percent for the 

IEEE Reliability Test System [30].  

                                                 
1
 The 286 generator case in Appendix B uses about 4 Mb of disk space to store all the Hj,k factors. 
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Virtual Generators 

    The real generation model described up to this point can only be used to shed 

load for the entire system.  However, load shedding across the total system does not 

make sense as a corrective action.  Selective load shedding of specific areas or even 

specific buses associated with specific generators will be required to efficiently 

unload the overloaded lines. Virtual generators are power injections into selected 

load buses to effectively reduce load at these buses.  The distribution factors [1] for 

the virtual generators are calculated in the same manner as previously described for 

real generators and are included in the set of Hj,k.  Figure 7.2 shows how a group of 

three buses have been selected to be candidates for load shedding.  The ‘virtual 

generation’ injected in this example has been arbitrarily set at half the load of each 

bus. 

 

 

 

 

 

 

 

   virtual generator 

          load 

 

            incremental flows to all buses in the network 

 

 

Figure 7.2  Virtual Generation Injected At Three Load Buses 
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    In setting up the virtual generation incremental load flow, each virtual 

generator k is made proportional to the real load on each bus in which load shedding 

is to be executed proportionately (later) on all the load buses selected.  The case is 

solved, the incremental line flows are calculated, and then the flows are normalized.  

These incremental line distribution factors are appended to the bottom of  H
T
. 

    As in the real generator outage solutions, 1) autotransformer taps are held 

constant, 2) generator reactive is unlimited, and 3) total network load is scaled 

uniformly to act as the power slack generator.  The solution tolerance can be relaxed.  

Note that in the load flow solution, the virtual generation injection at a bus is one 

thing, but the MaxGen configuration total system MW load being adjusted as slack 

generation is quite another thing.  They are handled separately as the load flow is 

being solved.  This means that the virtual generation injections are to be held 

constant, while at the same time, the loads are being scaled upward or downward on 

all load buses to meet the total load flow power requirement. 

    Note that no scaling is performed for the virtual generation distribution line 

factors.  There is no reference load flow case for checking the sums of incremental 

virtual flows.  So this process is skipped for the virtual distributions. 

    The selection of buses to be grouped together for proportional load shedding 

is somewhat arbitrary, although the selection will affect the final output report 

results.  The author has elected to use the load areas originally defined in the load 

flow data as the load shedding areas also.  Another possibility, not yet modeled in the 

PLF program, is to let every bus in the load flow be a separate candidate for load 

shedding.  This highest degree of detail in the load shedding model would allow the 

LOLP and EUE of every bus in the network to be calculated as a function of both the 

generation system and transmission system reliability.  This information is of great 

value, so the PLF program will be programmed in the future to model individual bus 

load sheddings. 
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Real And Virtual Generation Superposition  

    Because the network is almost linear in real power, the incremental real 

power flows of real and virtual generation can be linearly combined to produce a set 

of incremental real power line flows that are representative of the incremental flows 

that will occur if the specific AC load flow case of generation-to-load is set up and 

solved.  This superposition is only used in the load shedding operation explained in 

Chapter 10.  Figure 7.3 illustrates what happens when the virtual generation 

distribution factors [1] are subtracted from the real generation distribution factors. 

 

 

 

 

 

      generation     load             generation     load 

 

 

 

Figure 7.3  Combined Real And Virtual Generation 

 

    Equation 7.1 shows how linear combinations of normalized Hj,k factors are 

used to produce new generation-to-load factors Hj,m-n.  For line j, the m terms are real 

generators, and the n terms are virtual generators. 

              [ Hj,m-n =    Hj,m  Hj,n  ]  j =1, N t            (7.1) 

    The process of linearly combining incremental flows from generators and 

loads is consistent with the LLS methodology because all dispatches are to the total 

system loads.  This is an inherent part of the LLS method but not the NLLS method. 
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    When the H distributions of generation and virtual generation are subtracted, 

as they are in Equation 7.1 and in Figure 7.3, only the net incremental flows from 

generation to load remain.  This superposition principle has been tested analytically 

in small three and four bus examples and is found to have a good 

theoretical basis. 

    Equation 7.1 was a very important development in the theory 

needed for the PLF model.  When (7.1) was implemented, it solved a 

major problem that was impeding the successful implementation of the 

convolution methodology.  Consider this worst case situation as an 

example of the problem.  Suppose a system has 300 generators, 2000 buses, 

and 3000 lines.  Let one load flow require one second solution time.  The line 

distribution factors for all single generator outages to total system load is 

30030004 = 3,600,000 bytes of storage and requires 300 seconds of solution time.  

Now the problem of defining network incremental line flows for specific load 

sheddings must be solved.  Without using virtual generation and Equation 7.1, the 

distribution factors for all combinations of load and generation is calculated as 

300200030004 = 7,200,000,000 bytes and requires 3002000 = 600,000 seconds 

or 167 hours of computer run time for just one study case!  Clearly this is not 

feasible.  Using virtual generation and Equation 7.1, this drops to a total storage 

requirement of (300+2000)30004 = 27,600,000 bytes and 300+2000 = 2300 

seconds or 40 minutes of computer run time, which is reasonable. 

    In setting up the 286 generator example case, the load (shedding) areas have 

been defined according to the original load flow data with eight areas plus one new 

area
1
.  This is only nine load areas.  All the load sheddings to remove transmission 

                                                 
1
 The City of Austin has been split into two areas making the total ERCOT system nine load areas. 
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limitations are done by scaling load proportionately within an area.  Only nine virtual 

generation cases are run and stored in the generator-line distribution file rather than 

the 2000+ buses given as an example in the above discussion.  This rather coarse 

model of load shedding creates another problem.  Some overloaded lines internal to 

an area that are not strongly associated with the flows from generation, but are mostly 

local load driven, cannot be unloaded with such a coarse load model.  There is a way 

to get around this problem without needing to run virtual generation on every bus in 

the system.  This shortcut is described in Chapter 10 and allows the use of only major 

load areas as virtual generation.  This saves considerably on storage and run time but 

produces less accurate results. 
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Chapter 8 

Probabilistic Line Flows 
 

    This chapter explains how the incremental line flows on each line due to each 

generator being outaged are convolved together to form line flow distributions that 

are cumulative and monotone decreasing.  These distributions contain the generation 

outage states information as well as how the power is redistributed throughout the 

network as generators randomly fail. 

    By performing all convolutions before load sheddings, the generator outage 

events are independent events and can be convolved in any order.  If line flow 

corrective actions were to be taken as the generators are convolved in calculating the 

line flow distributions, then their outcomes become dependent, and the convolution 

process would produce incorrect results.  Load sheddings are performed as a last step 

in the PLF model to maintain independence and linearity during the calculation of 

line distributions. 

    The process for creating line flow distributions Fj(x) is similar to the process 

for creating the generation function FG(x).  Very briefly, the first step is to give all 

lines a probability of one with flow equal to the MaxGen configuration MW flow.  

Figure 8.1 shows how the line distribution functions are initialized for the MaxGen 

configuration.  Then the incremental line flows for all generator outages are 

convolved one at a time recursively into the line distributions to produce a set of 

probabilistic line flows. 

 

Convolution Process Methodology 

    The outcome of the complete set of all combinations of generation failure 

states is described by FG(x).  Because the generator outages are independent, the 
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generators can be convolved in any order without affecting the outcome of FG(x).  

Each load bus and each load area receives a proportion of FG(x).  Every specific 

outage configuration has a specific set of line flows in the network.  The MaxGen 

configuration load flow and all the individual generator outage load flow cases are 

explicitly enumerated and saved.  These cases have little error in line flow 

calculations
1
. 

    The network real power flows in transmission lines for two and more 

generators simultaneously outaged is constructed by taking linear combinations of 

incremental line flows from the individual generators outaged cases results.  The 

linear combination of all generators outaged simultaneously produces exactly zero 

MW line flows everywhere, giving assurance that the linear combination of flows can 

be very deep indeed without resulting in large solution errors. 

    Consider the flows on a single transmission line l, in the network.  Every 

combination of outaged generators has a probability.  Linearly summing all the line l 

incremental flows of the outaged generator cases and subtracting this sum from the 

line l MaxGen configuration flow produces a specific MW flow for line l for this set 

of generators outaged.  All configurations of multiple generators being outaged 

produces a corresponding set of line flows for line l.  Using PQ convolution, the 

linear combination of all these configurations can be efficiently calculated. 

 

Calculating Line Probabilistic Distributions 

    The Hj,k factors link the generator k states in Table 3.3 with the transmission 

line j flows in Fj(x).  Fj(x) = Pr[j line flows  x] is similar to FG(x) except the range 

of Fj(x) has both negative and positive x, whereas for the range of FG(x), x is 0 

                                                 
1
 Small differences in results are seen in the order of convolving generators due to numerical machine 

roundoff  errors and due to the PQ process itself not being an exact process. 
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through Ck.  Fj(x) is initialized to represent the MaxGen configuration flow xoj on 

line j with probability of one as shown in Figure 8.1. 

      i-1   i   i+1                   i-1   i   i+1 

  1                          1 

                                  A 

                MaxGen MW flow xoj          p         xoj 

  Pr        r                    Pr   

 

                                     B 

  0                          0 

      hj PQ Fj(x) grid i steps             hj PQ Fj(x) grid i steps 

 

 Figure 8.1a  Idealized Initial Fj(x)       Figure 8.1b  Actual PQ Initial Fj(x) 

 

    Initially all generators are up and available and this produces the initial line 

flow xoj in line j in the MaxGen configuration load flow.  Outaging a generator k 

produces an incremental change in flow of  Hj,kCk  MW or  Hj,kDk  MW if the 

outage is partial in line j.  For any line j, the set of generator states in Table 3.3 

combined with Hj,k distribution factors defines the probabilistic line flows Fj(x) as 

shown in Equation 8.1.  Equation 8.1 is the total PQ convolution process for all lines 

j, from 1 through N t.  

          [Fj(x)  =  [ (Hj,kGk)Fj(x)  ] k = 1, Ng  ] j = 1, N t           (8.1) 

 

    In the MaxGen configuration, all the line flows due to all the generators on 

line are already included and sum to xoj for each line j as shown in Equation 8.2.  xoj 

is also the base case MaxGen configuration line flow for line j.  Equations 8.2 

through 8.7 produce the same initialization of the line distribution shown Figure 8.1. 

 

               xoj = H Cj k

k

Ng

k,



 
1

                   (8.2) 
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Fj(x) is initialized for the MaxGen configuration as a real number real*4 precision 

array 

 

             Fj(x (ib)hj) = 1 , (the array points  i) 

             Fj(x = (ib)hj) = p  , (the array point   = i) ,        (8.3) 

             Fj(x (ib)hj) = 0 , (the array points  i) 

 

where i is the discrete array integer point closest to xoj according to 

 

               i = INT(
x

h

oj

j
+ b + .5) .                 (8.4) 

 

The +.5 term in Equation 8.4 shifts the integer process range so that an i is found 

allowing the xoj to fall within the r range of  .5  r+.5 as shown in Figure 8.2. 

 

 

        1 

 

                 

 

 

        0 

             r:  1   .5     0     +.5   +1 

 

Figure 8.2  Initial Line Distribution Parameter p(r) 

 

 

The hj MW grid spacing in Equation 8.4 is 

 

         hj = (xmaxj  xminj)/(number of grid increments)         (8.5) 

 

where xmaxj and xminj are the minimum and maximum values of line flow x that can 

occur. 

Pr 
p(r)=r+.5 
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The xmaxj and xminj are calculated using 

 

             xmaxj = H Cj k k

k

Ng

, 



1

  for Hj,k > 0 

             xminj = H Cj k k

k

Ng

, 



1

  for Hj,k < 0 .             (8.6) 

Then             p  =  (
x

h

oj

j
+ b + .5)  i                 (8.7) 

 

in which b is a shifter on the x axis to keep xmaxj and xminj within the range of the 

discrete computer program array.  For example, the discrete array Fj(x) may be 

dimensioned from 1 through 360 (as is the PLF program).  A mapping is needed 

between the x MW line flows and the array positions.  A simple linear conversion of 

the form i=mx+b is appropriate in which the i are integer positions 1 through 360 in 

the computer program array.  Let  1 = m(xminj) +b  and 360 = m(xmaxj) +b.  Then 

 

          m  =  (360  1)/(xmaxj  xminj)  = 
1

h j

 ,             (8.8) 

and               b   =  1  
x

h j

min j
 ,                   (8.9) 

 

in which m and b allow the xminj and xmaxj to align exactly with the array end points. 

    Equation 8.1 will only produce low error on the lower right hand tail of Fj(x).  

In order to model negative flow line overloads accurately, the line direction is 

reversed and Equations 8.1- 8.9 repeated.  This means that line j can have a second 

Fj(x) in which the line flows have been reversed and the line overload is in the 

negative flow direction.  The -j in F-j(x) is used to signify convolution Fj(x) with 

flows reversed for line j.  Figures 8.1a and 8.1b show the forward and reversed line 
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flow functions Fj(x) and F-j(x) for line 1389 as an example.  The log scale allows the 

extremely small probabilities to be displayed. 
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    Figure 8.1a  Line 1389 Probabilistic Loading In The Forward Direction 
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    Figure 8.1b  Line 1389 Probabilistic Loading In The Reverse Direction 

MW Range Not Overloaded 
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    Line 1389 is centrally located in Texas and is probabilistically overloaded by 

deficiencies in generation in either North Texas or deficiencies in generation in South 

Texas.  The maximum overloads are 242% forward and 221% reversed.  However, 

the probability the transmission line will ever actually be overloaded is extremely 

small.  The heavy horizontal line shows the line’s normal loading range of -1072 to 

1072 MW.  These curves are typical of all the probabilistic line loadings in this large 

network.  The xmaxj and xminj line extreme flows are usually large but the 

probabilities of overload are extremely small.  These extremely small probabilities 

are easily calculated and observed using the convolution method.  The enumeration 

methods are not capable of examining this part of the probability space. 

 

Screening and Ranking Lines 

    A screening criteria is useful in deciding which lines to not monitor.  For each 

enumerated configuration with line outages as well as the configuration with all lines 

in service, lines with xmaxj < Rj and xminj > Rj are discarded from further analysis 

since no generation failure states causing an overload on line j exist.  This test is 

performed before the line flow convolutions. 

    Lines with small Fj(x = Rj)  10
12

 can also be discarded.  Experience shows 

that lines with these very small probabilities of overload will not contribute any 

observable amount of EUE to the final output results.  For example, a line overloaded 

by 1000 MW, at a probability of 10
12

 for one hour, represents an energy of overload 

of only .001 Watt!  Obviously, this overload will contribute little to the overall EUE. 

    Experience with the ERCOT system has indicated that this screening process 

results in about 500 lines out of a total of 3200 lines will be retained for probabilistic 

overloading and load shedding analysis.  This number is very system dependent and 

will probably vary considerably for different systems.  Only the ERCOT system has 

been tested at this time. 
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Chapter 9 

Line Outage Model 
 

    This chapter presents a new method for modeling multiple simultaneous line 

outages in large electric networks. The method: 1) calculates line currents and 

powers; 2) tests for system separation; and 3) updates real power line distribution 

factors [29,55] useful in linear programming (in Chapter 12) and probabilistic 

models.  A one-time factored sparse complex admittance matrix of the network series 

line impedances is used to calculate incremental voltages from complex injection 

currents.  Each set of lines out of service requires one direct calculation.  Differences 

in solution results between this method and load flow for several lines and generators 

outaged are shown in Chapter 11. 

    Dr. Ray Shoults at the University of Texas at Arlington developed the fast line 

outage technique as a part of his dissertation [94].  An earlier method by Brown [95] 

is similar to Shoults’ ‘zipflow’, but Brown’s method has more computational error 

due to the sparse matrix structure and the way he stores and calculates incremental 

voltages.  Unfortunately, Dr. Shoults’ efficient computational method was never 

properly published in a journal.  This dissertation not only uses [94], but shows how 

the zipflow theory in [94] can be extended to cover the case of many lines outaged 

simultaneously.  A paper has been submitted to the IEEE on this topic [55]. 

    A second extension to [94] shows how new Hj,k factors can be estimated for 

multiple lines outaged without actually running the load flows to calculate the new 

distribution factors [55] for the new networks.  These new methods are very efficient 

computationally, which allows a greater number of line outage configurations to be 

enumerated in conjunction with the total generation outage probability space. 
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Single Line Outaged 

    A fast line removal approximation is used to avoid solving a new network 

matrix with each line outage [94,95].  The use of a complex number matrix in this 

zipflow formulation gives better results than a real number matrix of power and 

voltage angle.  The line removal involves a series of mathematical steps.  Figure 9.1 

shows the first step is the injection of (10) amp in and out of the line j to be 

removed.  This creates a set of small [V]j ‘test’ voltages throughout the network.  

The incremental voltages created on the ‘from bus’ and the ‘to bus’ ends of line j are 

Vf j and Vt j respectively. Line j incremental current will be less than 1 amp if the 1 

amp injected current circulates throughout the network. 

 

 

              Vf j       Line j     Vtj  

 

 

          ‘from bus’   +10 amp     10 amp   ‘to bus’ 

Figure 9.1  Inject 1 Amp In And Out Of Line j 

 

    Figure 9.2 shows the incremental line j current (Vf jVt j)Yj being scaled by 

a complex number Sj in order to create a circulation current that is completely self 

contained as a loop current within line j.  This current includes the original base case 

load flow current as well as the portion of the injected current flowing in line j.   Line 

j base case current is not canceled by this process.  The purpose is to self-contain the 

base case current within the local circulation current set up by Sj so that no line 

currents from other adjacent lines from either the base case or from the injected 

currents flow across the gaps shown in Figure 9.2.  In practice, the line is not 
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removed from the matrix solution, but the equivalent voltages in the network are the 

same as though line j has been removed. 

  

            Sj Vf j                   Sj Vtj  

                 Sj = Ib j+[Sj (Vf jVt j)Yj] 

 

 

               from  +Sj amp           Sj   to 

Figure 9.2   Single Line Removal Using Sj Injection Current 

 

    The mathematical steps to calculate Sj are outlined below.  Begin the process 

by solving a load flow of the network giving the set of all [V]b=[...Vf b j ...Vt b j ...]
T
.  

Calculate the base case complex current Ib j of line j to be removed.  The calculation 

of Ib j should not include shunt elements to ground such as line charging.  Including 

shunt elements and currents in this line outage process increases solution error when 

benchmarked against the same line outages solved with a full load flow solution. 

    Next, choose a single point on every line to measure line current.  The PLF 

model calculates base case and incremental line currents on the ‘to’ end of every line 

because the PLF load flow autotransformer model has only a series Z with no shunt 

element connected to the ‘to’ bus.  This allows the autotransformer tap to not have a 

shunt in the [Y] matrix.  The importance of this choice is described below. 

    The [Y] complex nodal admittance matrix of the network is constructed from 

real and reactive in-line series impedances.  One bus in the network is grounded using 

a low impedance shunt element and remains at zero incremental volts at all times.  

Although any bus may be the grounded bus, it should be one that can regulate the 

voltage under severe line outage conditions in a full AC load flow.  The use of other 
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shunt elements in [Y] allows localized loop currents to flow to ground and reduces 

the magnitude of incremental voltages remote from the outaged line j.  The use of [Y] 

without shunts (except the reference grounded bus) produces more accurate line 

outage results than when shunts are included based on the author’s experience with 

the model.  The addition of shunts destroys the model’s ability to keep the 

incremental line currents completely contained within the transmission lines 

themselves.  This means that the system separation test will be incorrect if shunts are 

included.  Also, the incremental line currents are used to calculate incremental line 

powers.  Shunts effectively drain away the small currents on remote lines from the 

initial 1 amp injection.  The model with shunts added will produce incremental 

powers on remote lines that are too small when compared with a full AC load flow. 

    The next step is to find the set of all [V]j.   Vf j and Vt j are incremental 

voltages resulting from the injection of 10 amp into line j as shown in Figure 9.1.  

Equation 9.1 shows this is a standard nodal admittance matrix solution.  The PLF 

model uses the sparse matrix technique in [97] to efficiently solve Equation 9.1. 

 

           [V]j = [...Vf j ...Vt j ...]
T 

= [Y]
-1

[...1...1...]
T
           (9.1) 

 

    The [V]j calculated from the 10 amp injections for line j are saved for 

use in other calculations such as the outaging of many lines.  The complex scale 

factor Sj for scaling the incremental network bus voltages is given in Equation 9.2. 

 

               S
I

V V Y
j

b j

f j t j j


 

  

  1 ( ) 
                (9.2) 

 

    Sj is also the complex injection current that produces the totally self contained 

current in line j as shown in Figure 9.2.  If less than .001 per unit amps injection 

current flows through the rest of the network, there effectively are no alternative 
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paths for the injected current to flow other than the outaged line j.  Then, the network 

will be broken into two islands by the outage of line j if Equation 9.3 is true. 

 

               1 001  ( ) . V V Yf j t j j               (9.3) 

 

Equation 9.4 creates a temporary [V]new set of voltages for the outage of line j. 

 

                 [V]new = [V]b + Sj [V]j                (9.4) 

 

    Line currents including line shunt currents are calculated using [V]new to 

check for line overloads with line j outaged.  This process is repeated for all single 

lines outaged and all [V]j are saved for use in other calculations. 

 

Multiple Lines Outaged 

    Multiple line removal is an extension of single line removal in which complex 

scalar Sj becomes complex vector [S] for n lines outaged simultaneously.  Sj elements 

of [S] are injection currents into and out of each of the lines j=1...n.  An example for 

n = 3 is shown in Figure 9.3. 

 

           from    S1 = Ib1 + I11S1 + I12S2 + I13S3   to 

       Line 1 

                 S2 = Ib2 + I21S1 + I22S2 + I23S3 

       Line 2 

                 S3 = Ib3 + I31S1 + I32S2 + I33S3 

       Line 3 

 

Figure 9.3  Three Lines Outaged Example 
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    In Figure Ib1, Ib2, Ib3 are the base case line complex currents for lines 1, 2, and 

3, respectively. I11, I22, I33 are the line self currents from the 10 amp injections 

on each individual line.  I12, I13, I21, I23, I31, and I32 are the line transfer 

coupling currents from the 10 amp injections.  For example, I12 is the current in 

line 1 from the 10 amp injection in line 2.   Incremental Iij currents on lines i for 

injections j are calculated as shown in Equation 9.5 from the set of [V]j  calculated 

in using Equation 9.1. 

 

                 Ii j = (Vf ij  Vt ij) Yi               (9.5) 

 

    Rearranging the equations shown in Figure 3 for n = 3 produces the matrix 

Equation 9.6 for finding the complex [S] vector. 
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           (9.6) 

 

    [S] complex scale factors (bus injection currents) simultaneously disconnect 

all n lines from the network.  Equation 9.6 is solved using Gauss elimination since the 

matrix is dense and small.  A singularity of Equation 9.6 indicates a system 

separation.  Any diagonal term becoming nearly zero during the solution of Equation 

9.6 means the system has electrically isolated buses or system separation condition
1
.  

What to do with the islands created by system separation is discussed at the end of 

this chapter.  After Equation 9.6 is solved, the new bus voltages [V]new for the case of 

multiple n lines simultaneously outaged can be calculated using Equation 9.7. 

 

                                                 
1
 The matrix will only become singular in the process of solving (9.6) if the network is broken up into 

islands by the removal of the lines being outaged. 
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              [V]new = [V]b + 

j

n




1

Sj [V] j                (9.7) 

 

    Line currents including line shunt currents are calculated using [V]new to 

check for line overloads with lines j=1...n outaged.  The processes in Equations 9.5 

through 9.7 are repeated for other sets of line outages. 

 

Creating New H Factors For Line Outage Cases 

    This chapter has thus far presented models based on linear summations of 

complex incremental line currents.  However, complex incremental currents are not 

directly usable in linear programming and probabilistic models based on the use of 

real numbers.  The real power distribution factors Hi,k are the set of per unit 

incremental real powers in all lines i due to all generators k.  The Hi,k factors have 

been calculated using incremental load flow solutions.  Next in this chapter, a method 

for updating the Hi,k factors is presented.  The updated H represents real power 

distributions for multiple line outages.  They are estimated without running new AC 

incremental load flow cases for each line outage configuration. 

 

Real Power Matrix Approach Fails: 

    A line outage model was developed using all real powers in a matrix similar 

to Equation 9.6 for multiple lines outaged in order to calculate a set of real [S] scale 

factors.  The real power model worked well in predicting incremental line powers for 

single line outages.  It frequently failed to predict system separation because the real 

matrix was not singular enough when the system was in a state of separation.  It 

performed poorly for multiple line outages in predicting real power flow 

distributions.  Subsequently, the approach using only a real power matrix to model 

line outages was abandoned. 
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Real Powers From Complex Currents Approach Succeeds: 

    The successful solution approach is to perform all line outages using only 

Equation 9.1 through 9.7, which contain only complex incremental currents and 

voltages.  Real incremental powers are calculated as a secondary operation from the 

complex incremental currents in the line outage model. 

    Each generator k has a set of Hi,k real power per unit distribution factors for 

all lines i.  For any line or lines outaged, each set of power distribution factors for 

each generator is updated as a separate operation for each generator.  These updated 

factors are calculated, used immediately, and then disposed of because far too many 

configurations exist to store all of them in computer files or memory.  The updating 

process presented here is very computationally efficient and is much faster than 

running successive load flows to generate new distribution factors. 

    Assume line j is to be outaged.  Generator k has a per unit real power flow in 

line j of Hj,k.  The objective here is to open this line and observe the Hj,k power 

redistribution in the network.  However, Equation 9.2 requires that a line complex 

current rather than a real power flow, be interrupted.  The per unit line j complex 

current to be interrupted is calculated from the real power using 

 

                  Ij  =  
H

V

j k

tbi

,
*







                   (9.8) 

 

where Ij is a complex number.  Equations 9.2 through 9.4 are now applied to open 

line j, and new incremental per unit line currents Ii j throughout the network are 

calculated.  The reverse process of Equation 9.8 is used in Equation 9.9 to turn the 

line i incremental currents due to line j being outaged back into incremental real 

power flows Hi using Equation 9.9. 

 

                 Hi = Re{Vtbi Ii j
*
}                  (9.9) 
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Then, the Hi,k distribution factors are updated using Equation 9.10. 

 

                 Hi,k  = Hi,k + Hi                 (9.10) 

 

The Hj,k for outaged line j is set to zero since it has no flow. 

    The above example is for a single line outaged.  The same process is used for 

multiple lines outaged.  Equations 9.5 through 9.7 are used to calculate the Sj factors.  

Then Equation 9.11 is used to calculate the set of incremental powers due to the 

simultaneous outages of the many lines j=1...n for i j. 

 

              Hi =  Re{Vtbi(
j

n




1

Sj Iij)
*
}             (9.11) 

 

System Separation 

    The system separation condition is an important and more difficult situation 

to model in the convolution context.  To study the adequacy of the transmission and 

generation systems, each island created by the separation needs to be studied 

separately.  A considerable amount of new computer code is needed in the PLF 

program to model the system separation condition.  This capability does not presently 

exist.  Also, any dynamic responses due to system separation are clearly beyond the 

scope of this dissertation and are not included in the PLF model.  The PLF model 

does calculate the probability of each system separation configuration and the total 

probability of system separation.  The total probability of being in a configuration of 

system separation is shown as a part of the output reports. 
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Chapter 10 

Procedure For Removing Line Overloads 
 

    The removal of transmission line overloads is the last step in the convolution 

methodology presented in this dissertation.  By necessity, this operation must be last.  

If line overloads are removed as generators are convolved, independence of generator 

outage events is no longer true, and the convolution of generator outage states 

produces incorrect results.  All generation outage events are first calculated without 

consideration for line overloads.  The resulting line overloads are then used to 

estimate the MW and MWh of specific generator-load pairs that are jointly reduced to 

remove the line overloads.  The line overloads are shifted in small probability p 

increments and small MW increments as shown in Figure 10.1.  For every line flow 

shift the reader needs to keep in mind that a set of corresponding shifts are occurring 

in the binary tree (imaginary) and in the generator reliability function FG(x). 

 

 

 

                 Pr    p               Pr 

                                          p 

    Gen. States       MW              MW 

             p      Generation States FG(x)     Line Flows Fj(y) 

 

 

 

Figure 10.1  Generator-Load Pair Shifted To Reduce Line Loading 

line overload states 



 

 132 

.  Summary Of The Process For Removing Line Overloads 

 line j with the greatest probability of overload is found, 

 an increment y is assigned for removal in line j, 

 the increasing flow generators are convolved, 

 the two dimensional F(x,y) is set up, 

 the decreasing flow generators are convolved into F(x,y), 

 a partial density 2-D function is created from F(x,y), 

 the most offending generator-load pair is taken from the LST, 

 the partial distributions are shifted to remove the line overloads, 

 the line overload distributions are stored in a temporary array T(x), 

 the T(x) is added to FG(x), 

 the other lines jointly affected by the generator-load pair are adjusted also, and 

 the process is repeated until all line overloads are removed. 

 

Load Shedding Methodology 

    A number of lines can be overloaded as a result of the convolution process 

described in Chapter 8.  The probabilities of line overloads vary widely, as does the 

range of MW loadings.  Figure 10.2 shows an illustration of several line loadings. 

         y 

        p 

              line j overloads shifted left by y 

     Fj(y)            Fj(y)= Pr [random line MW  y] 

 

 

                                      y 

         Rj           increasing MW 

Figure 10.2  Incremental Unloading Of Line j 
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    Line j with the highest probability of overload Fj(y=Rj) is selected to be 

unloaded first.  It has the largest amount of time in which the line will be overloaded 

for the specific p and y segment (shaded block) shown.  The removal of this shaded 

block shifts the line overloads to the left (dotted line) by y MW for the region yRj .  

The value of p is given in Equation 10.1.   

     

      p   = 1




y
F y dyj

R

R y

j

j

( )



     
F R F R yj j j j( ) ( )  

2
 for small y   (10.1) 

    The removed y increment on line j must be transferred to a specific 

generator and load.   A generator and load most responsible for causing the overload 

on line j does exist, so this generator-load pair needs to be identified and 

correspondingly reduced in output, consistent with the reduction in line j loading. 

 

     .1     .2v                     .2       .1 

                                     .15v 

     .05        .3      Line j    .35v 

                                 .2       .1 

       .2v 

            .25                      .18v 

    

Figure 10.3  Example Of Real And Virtual Distribution Factors For Line j 

 

    Figure 10.3 shows an example of several real and virtual (v) generators that 

are causing incremental loadings on line j.  The virtual generators are used primarily 

to develop line distribution factors associated with loads.  The line j distribution 

factor for each source is shown above the bus.  The thin lines represent an 
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interconnected transmission network.  Notice that the real generators to the left (.1, 

.05, .3, .25) are causing an increase in flow on line j (direction of the arrow), and the 

virtual generators on the right (.35v, .15v, .18v) are also causing an increase in 

flow on line j.  The largest flow is caused by the pair, .3 and .35v.  Together, these 

have a distribution factor on line j of .3(.35)=.65.  Therefore, the generator with 

the .3 factor and the load with the .35 factor will be reduced by y/.65 MW with 

probability p.  This change in generator output will need to be reflected in the FG(x) 

function and in the other line distributions.  The change in FG(x) is discussed next. 

    Figure 10.4 shows the relationship between the generation outage distribution, 

FG(x), and the generation availability distribution, FA(x).  Each function is the 

complement of the other, and their x axes are reversed.  FA(x) has an interesting 

property we will now use. 

 

 

 

       FG(x) = Pr outaged MW  x 

                            FA(x) = Pr available MW  x 

 

 

    0         x MW          0         x MW 

Figure 10.4  Equivalency Of Outage And Availability Distributions 

 

    Convolve the real generators with positive (line j) distributions into an Fj(y) 

temporary line distribution function and into an FA(x) temporary generation 

availability function.  Figure 10.5 shows that the resulting curves have a similar 

appearance, although they are different because the incremental x and incremental y 

values that are being convolved into each function are different sets of numbers. 
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               xmax 

 

           FA(x)                        Fj(y) 

 

 

    0         x MW     Ck              0   y MW   ymax 

Figure 10.5  Convolving Only The Positive Distributions On Line j 

 

    In Figure 10.5, xmax is the MW sum of all generators having positive 

distributions in line j,  ymax is the maximum positive MW flow on line j equal to the 

sum of all positive MW incremental line flows, and the dashed lines represent the 

maximum line j MW rating for the positive and negative line flow directions. 

    Figure 10.6 shows how the distributions appear if the most offending 

generator-load combination with the .65 line j distribution factor is deconvolved or 

removed.  In this example, line overloads are completely removed by corrective 

action on one generator-load pair.  However, the complete removal of this generator 

is an overcorrection.  The offending generator-load pair will be able to operate for a 

portion of the time at varying load levels and still not overload line j.  

 

 

               xmax 

 

        FA(x)                          Fj(y) 

 

 

    0         x MW     Ck              0   y MW   ymax 

Figure 10.6  Distributions With The Most Offending Generator-Load Removed 
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    Figure 10.7 shows the portion of the line distribution that is not allowed when 

the offending generator-load pair is put back in the system.  The shaded portion of the 

line j distribution is not allowed to exist, and is to be mathematically removed.  In 

removing the line j overload, consideration is given to how this affects the FA(x) 

distribution.  One apparent relationship in Figure 10.7 is that a y MW change on line 

j corresponds to a x=y/.65 MW change in the generator-line pair MW. 

 

                    distributions not allowed 

 

               xmax 

 

        FA(x)                          Fj(y) 

 

              
x

                           
y

 

    0         x MW     Ck              0   y MW   ymax 

Figure 10.7 Portion Of Probability Space Not Allowed To Offending Generator-Load 

 

    In addition to the x=y/.65 being true in Figure 10.7, the areas of the two 

shaded regions are also related by the same .65 (from Figure 10.3) distribution factor.  

This is due to an (almost true) assumption that every deterministic configuration in 

the binary tree (in Figure 10.1) that reduces the flow on line j uses the same .65 

factor.  The areas are directly calculated from these individual states that are in 

proportion.  Therefore, the areas are also in the same proportion. 
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                xmax 

          FA(x)                  Fj(y) 

 

              
x

                            
y

 

    0         x MW     Ck              0   y MW   ymax 

Figure 10.8  The Effects Of Adding A Negative Flow Generator 

 

    If there were no generators causing negative flows in line j, the overload 

portion of FA(x) could be mapped directly back to FG(x) since there is a one-to-one 

relationship between the two functions.  However, the presence of generators causing 

reductions in the overloads on line j must be taken into account.  Figure 10.8 is an 

example of how the line overloads in Figure 10.7 are dispersed in both the line j 

distribution and the FA(x) distribution.  In the example shown, the decreasing or 

negative flow generator is given an FOR  20% for easy visualization.  In each 

distribution, the new generator causes the original line overloads (shaded areas in 

Figure 10.7) to be split into 80% and 20% states for the new generator’s success and 

failure states, respectively.  The 80% success states are shifted to the right in FA(x) by 

the MW rating of the generator and are shifted to the left in the Fj(y) by the 

distribution factor times the MW rating of the generator. 

    Notice that 80% of the original line overloads are no longer overloading line j 

after the negative flow generator is added.  If FG(x) had been adjusted based only on 

the positive distribution factor generators, the amount of load shedding would have 

been greatly overstated.  The lesson taught by this example is that all generator 

outage states must be convolved together before applying load shedding. 
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    Figure 10.8 contains sufficient information to link the removal of the line 

overloads to the FA(x) and FG(x) distributions.  The original xmax and ymax locations 

are stationary as the negative flow generators are included.  Also, the relationship 

x=y/.65 is still true, as well as the .65 factor relationship between the two smaller 

shaded areas in Figure 10.8.  The two larger shaded areas are no longer of interest 

since they do not represent any problems in the system. 

    The steps given in this example show a need for a more general way to map 

the locations of line j overloads and FA(x).  A grid can be constructed to meet this 

general need as shown in Figure 10.9.  A specific state with a probability p in the 

binary tree in Figure 10.1 will have a specific location on this two dimensional grid.  

All the states in the binary tree have unique locations on this grid, which maps all 

possible combinations of line flow and generation availability. 

 

F(x,y) 

 

 

 

 

       Fj(y)               p 

 

 

 

 

         y 

           x           FA(x)            

Figure 10.9  F(x,y) Maps All Combinations Of Line And Generation States 
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    The overload increment y (in Figure 10.2) has been removed from the line j 

distribution by shifting the overloads on line j to the left by y.  The objective now is 

to map a corresponding shift to the temporary FA(x) function.  The examples given 

thus far are a guide on how to proceed in doing this mapping. 

 

 

 

                  y 

    1 

 

 Pr 

    0 

    xmax 

xmax =  of increasing flow gen. 

  distribution function movement 

                  FA(x)            x 

                          of all generation MW 

   Figure 10.10  Initializing F(x,y) With Line Overloads Due To Increasing Flows 

 

    Generators with incremental increasing
1
 flows on line j are convolved into a 

temporary line distribution function Fj(y) using the generator states in Table 3.3, the 

line distribution factors calculated in Chapter 7,  and the procedures in Chapter 8.  

The incremental decreasing flows require the use of F(x,y) to find the specific 

                                                 
1
 Note that these flows were referred to as positive flows in the previous examples in this chapter.  A 

better description is increasing flows rather than positive flows since negative flows can also cause a 

line to overload.  Increasing flows are those causing a line to become more overloaded in a chosen 

direction, and decreasing flows are those that reduce the overload in this same direction.  Since lines 

are tested for overload in both directions, the roles of increasing and decreasing incremental line 

flows are reversed, depending on which direction a line is being tested. 

 

line overload states in Fig. 10.7 

Rj(y)  y  max. line flow  

F(x,y) 
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locations between Fj(y) line overloads and FA(x).  F(x,y) is initially set to zero 

everywhere, except the left-most axis is set to F(x=xmax ,y)=Fj(y).  Figure 10.10 

shows how F(x,y) is initialized. 

    Figure 10.10 shows that the process of convolving decreasing line flow 

generators will shift the line distributions across the x-y plane.  This shifting  requires 

an interpolation using four adjacent points in F(x,y) surrounding a point to be 

interpolated.  Let 0<rx<1 and 0<ry<1 between grid increments and the four local 

discrete points on the surface of F(x,y) be defined as shown in Figure 10.11. 

 

                  T1   T2 

            y              ry 

                  T3   T4 

                       rx 

                     x 

          Figure 10.11  Linear Interpolation of F(x,y) 

 

    The convolution of a decreasing line flow generator into F(x,y) is given in 

Equation 10.2.  This is a two state PL equation for convolving generator k into line j 

on the F(x,y) distribution.  A three state generator will have an extra (Hj,kDk ) term. 

 

  F(x,y)after= F(x,y)beforeEFORk + F(xCk , y+(Hj,kCk ) )before(1EFORk)   (10.2) 

 

    In the above equation, the generator outage state is not shifted.  The generator 

available state is shifted downward according to (Hj,kCk)/hy = jy + ry and to the right 

according to Ck /hx = ix + rx.  The hx is the x axis grid MW spacing and hy is the y axis 

grid MW spacing.  The ix + rx is the integer and fractional x shift distance pointing to 

the left.  The jy + ry is the integer and fractional y shift distance pointing upward.  This 

is consistent with Figure 10.11.  Equation 10.2 is used to update the discrete array 



 

 141 

points F(ihx+bx , jhy+by).  The i and j are positive increasing steps upward and to the 

right.  The bx and by are the xmax shown in Figure 10.5 and the Rj in Figure 10.2 

respectively.  If F(x,y) is a FORTRAN array of discrete points, then the two state 

convolution equation is written as 

 

  F(i , j)  =  EFORkF(i , j) + 

       (1EFORk)[T1rxry + T2(1-rx)ry + T3rx(1-ry) + T4(1-rx)(1-ry) ]      (10.3) 

 

where the T values are determined by the location of the point to be interpolated 

according to ix + rx and jy + ry and the relative locations of the T points shown in 

Figure 10.11.  A three state generator simply has an extra interpolated shift point.  

    Figure 10.12 shows what F(x,y) might look like after the convolution of 

decreasing flow generators. 

 

 

                  y 

    1 

 

 Pr 

    0 

 increasing flow gens. 

 

 

                 FA(x)             x 

                          of all generation MW 

 

     Figure 10.12  An Example Of F(x,y) With All Generators Convolved 

line overload states shown in Fig. 10.8 

F(x,y) surface as a set of discrete points 
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    The F(x,y) is a cumulative distribution in both x and y.  However, what is 

needed are the point probability densities within the F(x,y) space.  These can be 

thought of as corresponding to the specific state probabilities shown in the binary tree 

in Figure 10.1.  By knowing the probability of these states and their locations, the 

shifting of line j overloads (down to the line rating) produces a trace on the FA(x) 

axis.  Figure 10.13 shows how shifting a single state p on the F(x,y) plane maps to the 

line loading and the generation availability distributions.  The shaded areas show the 

x and y shifts as a function of the location of p on the x-y surface. 

 

                  y 

    1    Fj(y) 

 

 Pr 

    0 

    xmax 

xmax =  increasing flow Ck 

               initial p 

                 FA(x)             x 

                             Ck 

 Figure 10.13  Discrete State With Probability p Shifted To Reduce Line Overload 

 

    Figure 10.14 shows that a cumulative distribution of three p states (shaded) 

can be shifted and mapped to both the Fj(y) and FA(x) functions.  The shifted states 

map in opposite directions on the line and generation distributions. 
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                  y 

    1    Fj(y) 

                                 p 

 Pr 

    0 

    xmax 

xmax =  increasing flow Ck 

 

                 FA(x)             x 

                             Ck 

   Figure 10.14  Distribution of States Shifted To Reduce Line Overload 

 

    Figure 10.14 shows that a distribution of states can be shifted and mapped to 

the FA(x) distribution in a precise manner.  The movement of the three p states on the 

paths indicated by the three arrows from their initial locations in the interior of the x-

y plane to the y=Rj axis effectively eliminates the line overload and maps correctly to 

the generation distribution. 

    F(x,y) is converted to a set of partial density functions Fp(x,y) by subtracting 

adjacent x rows for all y.  Equation 10.4 performs this operation.  The resulting 

Fp(x,y) are a series of distributions at every x grid increment oriented as shown in the 

shaded distribution in Figures 10.14 and 10.15. 

 

                Fp(x,y) = F(x,y)F(xhx ,y)            (10.4) 

 

The hx in Equation 10.4 is the discrete x axis grid spacing in Figure 10.14.  Figure 

10.15 below illustrates one of these distributions being shifted back to the x axis. 
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                  y 

    1 

 

 Pr 

    0 

 increasing flow gens. 

 

 

                                x 

                          of all generation MW 

 

 Figure 10.14  Shifting Partial Line Overload Distributions To The Generation Axis 

 

    The process of shifting the overloads in Fp(x,y) can now begin.  Select the m-n 

generator-load (virtual generator) pair with the greatest increasing flow line j 

distribution factor Hj,m-n.  This pair should be at the top of the load shedding table 

(LST).  An LST is constructed once and used repeatedly as line j is being unloaded.  

The LST should contain a list of generators, loads, and increasing flow distribution 

factors in descending order.  The LST can also log other statistics, such as how much 

power and energy has been decreased in each generator. 

    The next step is to shift the Fp(x,y) partial distributions as a function of the 

LST distribution factor.  The shifting process moves the partial distributions as shown 

in Figure 10.14.  The y/x movement slope is equal to the distribution factor Hj,m-n 

defined in Equation 7.1.  The partial distributions are shifted and added to an array 

T(x), which is a temporary holding tank for the distributions as they arrive at the 

lower x axis.  The partial distributions are added to T(x) as they are shown in Figure 

10.14.  The T(x) array captures all the incremental Fp(x,y) (shifted p states) 

Fp(x,y) 
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information.  The T(x) x axis is inverted and scaled (if necessary) to align with the 

FG(x) x axis.  Figure 10.15 shows the T(x) array being added to FG(x).  After this 

summation, the T(x) is reset to zero for the next line increment to be unloaded. 

 

  1 

 

                            

  Pr 

 

 

  0  

Figure 10.15  Generation Unreliability Due To Transmission Constraints 

    Thus far, only the one small y increment in Figure 10.2 has been unloaded 

and mapped to FG(x).  The shifted states on line j are due to the m-n generation-load 

pair reducing their MW by an amount y/Hj,m-n at a probability p.  Line j overload 

states are reduced by y MW.  This m-n generator-load pair may be contributing to 

the overloads of other lines l.  Each of these other overloaded lines l will have a 

distribution factor Hl,m-n increasing the overload in line l.  For lines with Hl,m-n >0, use 

Equation 10.5 to estimate the reduction in loadings by an amount yl for lines l. 

 

               yl = (y)(Hl,m-n)(Hj,m-n)
-1  

.             (10.5) 

 

    Equation 10.5 has an assumption that the overloads on the other lines l occur 

jointly with line j because the same set of generators are assumed to be overloading 

both line j and the other lines l.  Simple examples show this can only be true if the 

line overload increments are selected in decreasing order of overload probability and 

if the same set of generators are causing the overloads.  Figure 10.16 is an example of 

FG(x) 

FG(x)+ T(x) 



 

 146 

tightly coupled lines A, B (2 lines), and C in combinations of series and parallel.  The 

same offending generators cause proportional line overloads on all four lines jointly. 

 

 

 

 

                     A 

 

                 B        C 

 

 

 

Figure 10.16  Tightly Coupled Lines In Series And Parallel 

 

    The assumption that the same set of generators are causing the line overloads 

is most incorrect for overloaded lines that are weakly coupled electrically; which 

usually means they are widely separated physically.  For this situation the assumption 

that the overloads occur jointly is probably wrong.  However, the use of Equation 

10.5 for this situation does not introduce an unacceptable amount of error because the 

electrical coupling is low and Equation 10.5 produces very small yl adjustments 

compared with the y adjustment in line j.  The error introduced will cause the load 

shedding EUE to always be understated.  The examples in Chapter 12 show that this 

heuristic can give excellent results if the system is not too overloaded and that it does 

a poor job of estimating the load shedding if the system is extremely overloaded.  The 

large electric power systems are very reliable, so this load shedding model should 

produce reasonable results for realistic systems.  Once all the lines have had their line 

overload distributions shifted due to the offending generator-load pair, the entire 

process is repeated. 
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Chapter 11 

Large System Examples 
 

    This chapter gives two large system examples.  The first example tests the 

linearity of the fast line and generator outage model presented in Chapter 9 against 

full AC load flow solutions for combinations of up to one generator and three lines 

outaged simultaneously.  The first example also appears in [55].  The second example 

is a large system planning study in which the reliability benefits of an additional 480 

MVA autotransformer are studied.  The City of Austin studied this addition to offset 

the decrease in reliability due to a scheduled power plant retirement.  The second 

example also appears in [1]. 

 

Example One 

    Figure 11.1 shows the test system used to compare the new multiple line and 

generator outage model presented in Chapter 9 with full AC load flow solved cases. 

 

                 D         A1 

          City of Austin         A2    ERCOT 

           138 kV System         L1  345 kV System 

                 P         L2 

 

Figure 11.1  City of Austin Large System Network Test Case 

 

In this example, the City of Austin load level is maximized to 2334 MW as a MaxGen 

configuration load flow case with 74 MW COA transmission losses.  The four 

autotransformers A1...L2 are loaded to a total of 1143 MW and 430 MVAR in the 

MaxGen configuration base case.  Internal COA generation at D is 910 MW.  No 
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COA lines are overloaded in the base case, and all voltages are nominal.  The base 

case has all generators operating at maximum output levels with area loads scaled to 

equal area generation owned plus firm purchases less firm sales less area loss. 

    All the line outage cases shown in Tables 11.1 and 11.2 are deterministic 

solutions using the ‘zipflow’ model presented by Preston, Baughman, and Grady in [55] 

and are compared with full AC load flow solutions.  No probabilistic line flows are 

modeled in this test.  The purpose of this exercise is to test the ability of the zipflow 

to accurately predict MW line flows for multiple lines and generators outaged.  The 

zipflow solutions are the sums of large numbers of linear real factors. 

    The difference between Table 11.1 contingencies and Table 11.2 contingencies 

is that Table 11.1 has no outaged generation, and Table 11.2 has an additional loss of 710 

MW generation at bus D.  The line outages between the two tables are identical.  Each 

numbered case represents a different set of lines ‘out’ of service.  The results are shown 

inside the boxes which consist of 

 the MW flow from the linear summation of flows process, 

 the MW flow from the AC load flow, 

 the difference shown as an error in MW, and 

 the percentage error with reference to the line rating. 

The columns are descriptors of the case study and the six circuits monitored.  The rows 

are the different contingencies simulated.  Percentage errors are the MW differences 

between the two solution methods referenced to a 480 MVA line rating for all the lines 

and transformers listed.  Errors less than one percent are shown as <1% and are 

considered by the author as being very accurate.  The ‘base’ case errors in Table 11.1 

should be zero, but are not zero, due to differences in the MaxGen configuration load 

flow in the PLF model and the independently solved AC solutions. 
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Table 11.1  Transmission Line Flows Due To Line Outages, 

No Generation Outaged 

Zipflow  AC Load Flow = Zipflow Error 

 

Case 

Line 

A1 

Line 

A2 

Line 

D 

Line 

L1 

Line 

L2 

Line 

P 

 

base 

 

-277.0 

-277.2 

0.2 

<1% 

-270.6 

-270.8 

0.2 

<1% 

260.9 

259.9 

1.0 

<1% 

-297.1 

-297.3 

0.2 

<1% 

-297.1 

-297.3 

0.2 

<1% 

334.7 

332.6 

2.1 

<1% 

 

1 

 

 

out 

-423.8 

-416.5 

-7.3 

1.5% 

225.6 

223.9 

1.7 

<1% 

-329.1 

-332.2 

3.1 

<1% 

-329.1 

-332.2 

3.1 

<1% 

380.2 

381.9 

-1.7 

<1% 

 

2 

 

-313.3 

-315.8 

2.5 

<1% 

-306.1 

-308.5 

2.4 

<1% 

310.0 

312.7 

-2.7 

<1% 

 

out     

-505.3 

-499.1 

-6.2 

1.3% 

271.6 

264.9 

6.7 

1.4% 

 

3 

 

 

out     

 

out     

103.3 

107.5 

-4.2 

<1% 

-438.5 

-442.4 

3.9 

<1% 

-438.5 

-442.4 

3.9 

<1% 

538.4 

536.8 

1.6 

<1% 

 

4 

 

 

out     

-486.3 

-482.9 

-3.4 

<1% 

275.4 

278.2 

-2.8 

<1% 

 

out     

-567.7 

-566.5 

-1.2 

<1% 

316.1 

312.8 

3.3 

<1% 

 

5 

 

-519.1 

-517.2 

-1.9 

<1% 

-507.1 

-505.2 

-1.9 

<1% 

591.3 

589.1 

2.2 

<1% 

 

out     

 

out     

-91.7 

-92.7 

1.0 

<1% 

 

6 

 

 

out     

 

out     

148.1 

158.3 

-10.2 

2.1% 

 

out     

-795.2 

-794.9 

-0.3 

<1% 

480.9 

473.8 

7.1 

1.5% 

 

7 

 

 

out     

-876.6 

-864.5 

-12.1 

2.5% 

591.3 

593.7 

-2.4 

<1% 

 

out     

 

out     

-91.7 

-92.9 

1.2 

<1% 
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Table 11.2  Transmission Line Flows Due To Line Outages, 

710 MW Generation Outaged 

Zipflow  AC Load Flow = Zipflow Error 

 

Case 

Line 

A1 

Line 

A2 

Line 

D 

Line 

L1 

Line 

L2 

Line 

P 

 

base 

 

-289.2 

-294.4 

5.2 

1.1% 

-282.5 

-287.6 

5.1 

1.1% 

365.7 

377.6 

-11.9 

2.5% 

-280.0 

-279.9 

-0.1 

<1% 

-280.0 

-279.9 

-0.1 

<1% 

341.8 

339.9 

1.9 

<1% 

 

1 

 

 

out 

-442.4 

-442.5 

0.1 

<1% 

328.8 

338.7 

-9.9 

2.1% 

-313.4 

-317.2 

3.8 

<1% 

-313.4 

-317.2 

3.8 

<1% 

398.4 

392.4 

6.0 

1.3% 

 

2 

 

-323.5 

-330.5 

7.0 

1.5% 

-316.0 

-322.9 

6.9 

1.4% 

411.9 

426.1 

-14.2 

3.0% 

 

out     

-476.1 

-470.6 

-5.5 

1.1% 

282.4 

276.6 

5.8 

1.2% 

 

3 

 

 

out     

 

out     

201.1 

214.1 

-13.0 

2.7% 

-427.5 

-435.1 

7.6 

1.6% 

-427.5 

-435.1 

7.6 

1.6% 

554.5 

557.6 

-3.1 

<1% 

 

4 

 

 

out     

-501.9 

-505.3 

3.4 

<1% 

376.2 

389.2 

-13.0 

2.7% 

 

out     

-540.6 

-541.8 

1.2 

<1% 

328.4 

327.0 

1.4 

<1% 

 

5 

 

-517.4 

-520.5 

3.1 

<1% 

-505.3 

-508.5 

3.2 

<1% 

677.0 

681.6 

-4.6 

<1% 

 

out     

 

out     

-59.9 

-60.3 

0.4 

<1% 

 

6 

 

 

out     

 

out     

244.8 

262.3 

-17.5 

3.6% 

 

out     

-775.4 

-783.2 

7.8 

1.6% 

498.4 

496.4 

2.0 

<1% 

 

7 

 

 

out     

-873.6 

-870.6 

-3.0 

<1% 

677.0 

684.3 

-7.3 

1.5% 

 

out     

 

out     

-59.9 

-60.4 

0.5 

<1% 



 

 151 

    The results show that the summation of linear real incremental flows can be 

used to construct MW line flows that are in good agreement with full AC load flow 

solutions.   The process of adjusting the H line distribution factors in Chapter 9 to 

accommodate the triple contingency line outages works well, as evidenced by the 

relatively low errors in Table 11.2.  The results show very large variations in power 

flows on each line due to the multiple line and generator outages.  The combination 

of multiple lines and generators outaged simultaneously, and modeled as sets of 

linear factors, is new to the industry.  The results presented here and in [1, 34, and 55] 

are outstanding, considering that this type of model has not been previously 

constructed. 

 

Example Two 

    An example is presented showing how the PLF model presented in this 

dissertation has been applied to a real planning problem at the City of Austin Electric 

Utility Department.  The COA system in this example is a ~1700 MW peak demand 

69 kV and 138 kV system connected through a number of 480 MVA 

autotransformers to the ERCOT (Electric Reliability Council of Texas) 345 kV 

system.  The ERCOT system load flow and generator reliability planning data bases 

have ~ 300 generators, 4200 buses, and 5200 lines.  This is a large system because the 

generator and line outage configurations are far too numerous to enumerate. 

    The reliability of the COA system is highly dependent on its autotransformers 

to supply emergency reserve power from ERCOT as well as 950 MW COA owned 

generation on the 345 kV grid.  The autotransformers become more critical when a 

550 MW plant (Holly) centrally located in the COA system is retired in a few years.  

Presently, the COA has two bulk transmission substations, Austrop and Lytton.  Each 

station has two 345/138 kV autotransformers.  A third 345 kV substation called 
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Garfield has been constructed and will soon be energized with one 480 MVA 

autotransformer.  Figure 11.2 shows the layout. 

    The COA power supply reliability is a function of the ERCOT power supply 

reliability and the reliability of the transmission network delivering the ERCOT 

power. Autotransformer outages are severe because they are few in number in the 

COA system and because their repair times are long (six months to one year).  The 

COA autotransformer catastrophic failure experience is consistent with [66]. 

 

 

                      Austrop 

        City of Austin                ERCOT 

                      Garfield  

       138 kV System             345 kV System 

                      Lytton 

 

Figure 11.2  City of Austin 345/138 kV 480 MVA Autotransformers 

 

    For study purposes, a pessimistic autotransformer forced outage rate of 4% is 

used.  The study is repeated using a more optimistic 2% autotransformer FOR to see 

if the study results are sensitive to the FOR values chosen
1
. 

    Figures 11.3 and 11.4 show the additional EUE caused by autotransformer 

failures for all COA autotransformer outages through N-3 triple simultaneous 

outages.  Up to 60 lines in the COA system are monitored for probabilistic overload.  

Approximately 2
300
10

90
 generation outage configurations are modeled for all 

ERCOT generators. 

                                                 
1
 The autotransformer FOR assumption did not change the relative results of this study. 
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Figure 11.3  COA EUE With Autotransformer FOR=.04 
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Figure 11.4  COA EUE With Autotransformer FOR=.02 
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The following conditions are modeled in both Figures 11.3 and 11.4. 

 

 Curve 1 is the total generation supply EUE available to the COA with no 

transmission constraints.  This is the integral of the FG(x) for ERCOT and made 

proportionately available to the COA system. 

 Curve 2 represents the additional transmission EUE with 540 MW of Holly 

generators not retired and with no Garfield autotransformers. 

 Curve 3 shows the increase in EUE with the Holly generators retired. 

 Curve 4 is the decrease in transmission EUE as one autotransformer is added to 

the Garfield substation when Holly generation is retired.  This transformer already 

exists in the system. 

 Curve 5 is the decrease in transmission EUE as two autotransformers are added to 

the Garfield substation when Holly generation is retired.  Note that the second 

autotransformer at Garfield is the one under study and is shown lighter than the 

other transformers in Figure 11.2. 

 

    The study shows that two autotransformers at Garfield bring the reliability 

back to about the same level as before the Holly generators are retired.  This holds 

true for both the 4% and 2% autotransformer FOR as shown in Figures 11.3 and 11.4.  

The extra autotransformer is justified with the Holly generation retired. 

    Conventional load flow studies using deterministic enumeration contingency 

methods did not show a value for the additional autotransformer at the Garfield 

substation.  Only the full set of generation outages for all generators in ERCOT 

combined with the triple contingency outages of autotransformers serving the COA 

brought out the probabilistic value of the new transformer.  The completion of the 

PLF computer program made it possible for the first time to run this study. 
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Chapter 12 

Test Cases Using IEEE RTS 
 

    The purpose of this chapter is to benchmark the PLF method presented in this 

dissertation against an enumerated solution using a linear program with optimal load 

shedding.  Because the number of configurations increases exponentially with system 

size, a very small system must be used in this test if all generator outage possibilities are 

to be enumerated.  The IEEE Reliability Test System [28,30] is selected as a system with 

enough transmission and generation detail to make the test nontrivial.  Before describing 

the test setup and results, a description of the LP solution is needed. 

 

Linear Programming Model 

    A separate linear programming model was written several years ago within 

the PLF program to fully enumerate all generation outage configurations in very small 

networks.  The program code was added for the purpose of testing different 

convolution concepts as they were being developed.  The LP solution itself is not a 

part of the probabilistic load flow solution methodology.  It has been added only to 

verify convolution and load shedding results. 

    The Hi,k factors for every line i and generator k are directly usable in the LP 

constraints and objective.  The LP objective is set up to maximize the generation 

power delivered.  If no transmission constraints exist, the generators not outaged 

operate at maximum output.  This is a no load-shedding case.  Transmission 

constraints (line MW flow exceeding the line rating) reduces the delivery of power to 

individual load areas.   The LP finds the solution delivering the greatest amount of 

power to loads.  Equations 12.1 and 12.2 show how a single line i is tested for 

overload in both directions. 
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One line flow direction is 

        Hi,1U1+Hi,2U2+Hi,3U3+...Hi,Ng+1V1Hi,Ng+2V2... Ri ,      (12.1) 

 

and the other direction is 

 

      Hi,1U1Hi,2U2Hi,3U3...+Hi,Ng+1V1+Hi,Ng+2V2... Ri        (12.2) 

 

where Uk is the generator k output power in MW, Vi is the total virtual generation 

MW (load to be shed) in area i, Hj,k is the real power distribution factor for line j and 

generator k or virtual generator Ng+i, and Rj is the line j rating.  Each generator has a 

maximum power set by the constraint Uk  Ck where Ck is the MW rating of each 

generator k.  The objective function is to maximize the sum of all U values. 

    Each generation configuration is enumerated by stepping through all the 

possible combinations of generator outages, one configuration at a time.  In each 

configuration, the line flows are calculated using the distribution H factors.  If no 

lines are overloaded, the LP is not used since there is no load shedding for that 

generation configuration.  If one or more lines are overloaded, the LP is set up and 

solved.  The probability of each generation configuration is calculated along with the 

MW load shed for each configuration.  The statistics are assembled and displayed in a 

manner similar to the binary tree shown in Figure 3.15. 

 

IEEE Reliability Test System  

    The IEEE Reliability Test System has been modified by defining three load 

areas.  Dividing the RTS into three areas allows testing to be done on a nontrivial, but 

small multi-area model.  Figure 12.1 shows the RTS system with the three load areas, 

North (buses 14-22), Central (buses 3,4,6,9-13,23,24), and South (buses 1,2,5,7,8). 
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Figure 12.1  IEEE Reliability Test System 
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    In order to keep the full enumeration run time reasonable, generators are also 

combined at each load flow bus.  Table 12.1 shows the new generator data.  Each 

generator has a maximum capacity equal to the sum of all the original generation 

capacity at each bus with generators in the original RTS data.  The new generators 

are two state models with the EFOR set to the forced outage rate of the largest 

generator originally on the bus. 

 

   Table 12.1  Modified RTS Generator Data 

  #   Name   Area   MW   EFOR   Bus# 

 1   HYDRO   A1   300  0.010    22 

 2   COAL 1  A3   192  0.020     1 

 3   COAL 2  A3   192  0.020     2 

 4   FS#6 1  A3   300  0.040     7 

 5   COAL 3  A1   215  0.040    15 

 6   COAL 4  A1   155  0.040    16 

 7   COAL 5  A2   310  0.040    23 

 8   FS#6 2  A2   591  0.050    13 

 9   FS#6 3  A2   350  0.080    23 

10   NUCL 1  A1   400  0.120    18 

11   NUCL 2  A1   400  0.120    21 

 

    The RTS MaxGen configuration load flow has no overloaded lines when all 

lines are in service.  The probabilistic line overloads are small and contain little load 

shedding energy.  The RTS is well known as a very reliable transmission system, and 

modifications are usually made to increase line overload problems in the RTS.  The 

purpose here is to test the PLF heuristic against an independent LP solution in which 

the LP optimizes load shedding for every configuration of generation outages.  If no 

overloaded lines are found, there is no need for the LP, and there is no transmission 

load shedding.  To create a progressively weaker transmission system, all lines in the 

RTS are derated in 20%, 40%, and 60% steps to create probabilistic overloads.  This 

creates many overloaded lines.  Results are shown in Figures 12.2 and 12.3 for line 

deratings to 80%, 60% and 40% of normal capacity. 
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Figure 12.2  RTS Transmission EUE by Area Vs Percent Load For 80% Line Ratings 
Comparing Convolution Results With Linear Program Solution Results 
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Figure 12.3  Total Transmission EUE Vs Percent Loading For All Lines 
Comparing Convolution Results With Linear Program Solution Results 
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    The 80% line ratings case has several lines probabilistically overloaded: 

line 6-10 of 122%,  line 7-8 of 201%,  line 8-9 of 126%,  line 8-10 of 112%, 

line 14-16 of 118%,  line 16-17 of 116%,  and line 16-19 of 106%.   The PLF 

heuristic gives excellent results for this case with lines derated to 80% of normal. 

    The 40% line ratings case shows that the PLF heuristic performs very poorly 

and calculates a much too small transmission EUE compared with the LP solution 

when all lines are heavily overloaded (in both directions).  The error was introduced 

in the step 20 process of unloading lines using only the increasing line flows 

(increasing in both directions).  Step 20 assumes the generator-load combinations 

causing incremental line flows in opposite directions are too weakly coupled to be of 

significance.  This assumption is true only when the transmission system is reliable 

with low probabilities of lines being overloaded.  If lines in close proximity are 

heavily loaded in both directions, then the assumptions made in the heuristic are no 

longer true.  The 60% line ratings case shows intermediate error results as expected. 

    The ERCOT system appears to perform more like the RTS case with 80% line 

deratings than the 40% case, so the PLF model is operating in an environment in 

which the load shedding heuristic is most accurate.  Another point to be made is that 

the PLF error decreases as the system is made more reliable.  The enumeration 

methods increase in error as the system is made more reliable because they cannot 

uncover enough failure configurations to calculate the LOLP and EUE to a precision 

of two digits. 
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 Chapter 13 

PLF Program Output Reports 

Load Flow Reports 

    This chapter will step through the computer program’s output reports for the 

286 generator network.  This is a highly shortened report showing only a few lines of 

data for each type of output.  The actual report for this one case is >300 pages.  The 

reports below are listed in the same order as they are calculated and displayed.  The 

first output report is the load flow solution shown in Table 13.1.  Points of interest are 

given an      to draw attention to the information. 

Table 13.1  MaxGen Configuration Load Flow Initial Report 

 Case Title: 1996 ERCOT RELIABILITY TEST SYSTEM 

 

 Base MVA              =     100.0 

 

 Load Flow Solution Monitor: 

 Number of buses       =      2231      5500 max 

 Number of generators  =       147 

 Number of circuits    =      3092      6500 max 

 Number of xformers    =       553      1200 max 

 Number of areas       =         9        20 max 

 Swing Bus             =      4546 

  

 Read load flow data   =   0h  0m  3s 

 regulated bus 6235 reassigned to bus 6230 

 regulated bus 6444 reassigned to bus 6443 

 

 load flow generators not having probability data: 

  799  TEXASAM  138  area 11    30.0 MW    15.0 MVAR 

 4181  DIAMON 8 138  area  4     4.0 MW     0.1 MVAR 

 4182  DS BAT 8 138  area  4    25.0 MW     0.0 MVAR 

 4194  DOW A  8 138  area  4   262.0 MW     0.0 MVAR 

 4234  EXXON  8 138  area  4    18.0 MW     0.0 MVAR 

 4492  PSARCO 8 138  area  4   491.0 MW   103.7 MVAR 

 4684  TEXGLF 8 138  area  4    82.0 MW    12.7 MVAR 

 6762  SAPS  1G14.4  area  6    24.0 MW    -6.7 MVAR 

 8032  AMS #1  13.8  area  8    19.0 MW     0.0 MVAR 

 these generators are assumed to have 95% availability 

 No of prob generators =       286       350 max 



 

 162 

Table 13.1  Load Flow Initial Report (cont.) 
 

 

 GENERATION SUMMARY (MW): 

 

 A#   AREA   PHYSICAL  EXPORTED  IMPORTED     NET    INTERCHG 

 --  ------  --------  --------  --------  --------  -------- 

  1  TU        25208.     1820.      558.    23946.     1262. 

  4  HLP       16587.     2218.     1740.    16109.      478. 

  5  CPSB       3699.        0.      700.     4399.     -700. 

  6  WTU        1929.      119.       33.     1843.       86. 

  7  LCRA       2854.      588.        3.     2269.      585. 

  8  S.TEX.     4380.      219.      767.     4928.     -548. 

  9  COA         910.      203.     1124.     1831.     -921. 

 10  COA9        540.      406.      439.      573.      -33. 

 11  TMPP       2090.       91.      300.     2299.     -209. 

 

 Matrix factoring time =   0h  0m  2s 

 Matrix initial size   =     10915     20000 max 

 Matrix final size     =     10047 

 

 ************************************* 

 * Generation is at maximum capacity * 

 * Bus loads have been scaled upward * 

 * Area interchanges have been reset * 

 * Generator Qmn/mx is now unlimited * 

 ************************************* 

 

 load flow solution monitor ... 

 iter  0   bus 4737  perr=    501.68   bus 7334  qerr=     50.42      0.11 sec 

 iter  1   bus 4488  perr=     28.18   bus 4488  qerr=    166.08      0.22 sec 

 iter  2   bus 9187  perr=     12.98   bus 1032  qerr=     25.25      0.22 sec 

 iter  3   bus 4726  perr=      1.11   bus 4726  qerr=      8.10      0.27 sec 

 iter  4   bus 6480  perr=      0.67   bus 4726  qerr=      3.58      0.22 sec 

 iter  5   bus 4726  perr=      0.23   bus 4726  qerr=      1.59      0.27 sec 

 iter  6   bus 6480  perr=      0.12   bus 4726  qerr=      0.71      0.22 sec 

 iter  7   bus 4726  perr=      0.04   bus 4726  qerr=      0.31      0.27 sec 

 iter  8   bus 6480  perr=      0.02   bus 4726  qerr=      0.14      0.22 sec 

 iter  9   bus 6763  perr=      0.01   bus 4726  qerr=      0.06      0.22 sec 

 iter 10   bus 4548  perr=      0.01   bus 4726  qerr=      0.03      0.27 sec 

 iter 11   bus 4548  perr=      0.01   bus 8263  qerr=      0.02      0.22 sec 

 iter 12   bus 4548  perr=      0.00   bus 8263  qerr=      0.01      0.27 sec 

 

 a load flow solution has been found 

 iteration time        =           3 sec 

 total load flow time  =           9 sec 

 

The load flow solution shown above uses the initial bus voltages of a previously 

solved case rather than starting from a flat start, as was shown in Table 6.1.
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       Table 13.2  MaxGen Load Flow Solution Summary Reports  

 

 AREA SUMMARY REPORT: 

 

 --FROM--    GENERATION    ---LOAD---     ---LOSS---   INTERCHANGE   ERROR 

 A#  AREA    MW    MVAR    MW    MVAR     MW    MVAR    MW    MVAR     MW 

 -- ------ ------ ------ ------ ------  ------ ------ ------ ------  ----- 

  1 TU     25208.  4201. 23464.  3768.  482.15   194.  1262.   239.  0.000 

  4 HLP    16587.  3277. 15955.  2429.  153.92   682.   478.   166.  0.005 

  5 CPSB    3699.   862.  4330.   448.   69.28   332.  -700.    82.  0.000 

  6 WTU     1929.   391.  1781.   541.   61.80   -42.    86.  -108.  0.001 

  7 LCRA    2854.   652.  2181.   498.   87.87   337.   585.  -182.  0.000 

  8 S.TEX.  4380.  1073.  4736.   448.  191.90   526.  -548.    99.  0.001 

  9 COA      910.   289.  1811.    73.   19.88   218.  -921.    -1.  0.000 

 10 COA9     540.   164.   569.   111.    3.71    73.   -33.   -21.  0.000 

 11 TMPP    2090.   196.  2246.   380.   52.55    89.  -209.  -273.  0.000 

 

    TOTALS 58197. 11105. 57074.  8696. 1123.07  2409. 

 

 

 LOW VOLTAGE SUMMARY REPORT: 

 

  1407  LONESTAR69.0  0.8615     (low)  1408  NOLAN  W69.0  0.8649 

  1409  NOLAN WT69.0  0.8655     (low)  1406  OAKCREEK69.0  0.8826 

  3487  WORTHAM 69.0  0.8837            3291  SLOCUM T69.0  0.8850 

  3286  GRAPELND69.0  0.8928            3290  ELK GF T69.0  0.8945 

  3307  TIMPSON 69.0  0.8975            3306  FITZE   69.0  0.8978 

 ...cont 

 

 

 HIGH VOLTAGE SUMMARY REPORT: 

 

  8262  ELPS    13.8  1.1092     (ok)   6763  SAPS  2G14.4  1.0749 

  4469  NORTHN 8 138  1.0529     (ok)   4818  CADDO  8 138  1.0528 

  4834  TCHITS 8 138  1.0508            4833  TCHITS 969.0  1.0503 

  4111  CEDARP 8 138  1.0500            4487  W A P  8 138  1.0500 

  4547  P H R N8 138  1.0500            4839  AMC CHM8 138  1.0500 

 ...cont 

                                                   (generator stepup xfmrs) 

 HIGHEST LOADED CIRCUITS SUMMARY REPORT: 

 

 6598  RIOPEC 269.0  -to-  6764  RIOPEC4G4.20   Ratg=    6   Pct Load= 183.9 

 3431  SANDOW  13.0  -to-  3430  SANDOW   138   Ratg=  173   Pct Load= 146.4 

 6161  PTCRK1 4 138  -to-  6755  PTCREK3G13.8   Ratg=   38   Pct Load= 143.5 

 6480  SAPS1  4 138  -to-  6763  SAPS  2G14.4   Ratg=  105   Pct Load= 134.6 

 3126  TDAD 6 G21.0  -to-  3125  TDAD TR        Ratg=  265   Pct Load= 119.6 

 ...cont 
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    The output also includes the standard load flow tabulation commonly referred 

to in the industry as the Northern States Power output report format, shown in Table 

13.3 below.  This report shows bus information and line information connected to the 

buses. 

Table 13.3  MaxGen Configuration Load Flow Bus And Line Tabulation 

 

 X---------------B U S   I N F O R M A T I O N--------------X X----------------L I N E   F L O W S---------------X 

 --------FROM--------   VOLTAGE     GENERATION    LOAD+SHUNT  ---------TO---------                PCT  RATG 

 BUS# A#     NAME      MAG  ANGLE   MW    MVAR    MW    MVAR  BUS# A#     NAME       MW    MVAR   CAP   MVA   TAP 

 ---- -- ------------ ----- ----- ------ ------ ------ ------ ---- -- ------------ ------ ------ ----- ----- ----- 

 9125 10 KINGSBRY69.0 1.005 -18.1    0.0    0.0    0.0    0.0 

                                                              9124  9 KINGSBRY 138  -28.8    2.7   13.   220 1.000 

                                                              9212 10 HOLLY   69.0   28.8   -2.7   13.   215 

 9128  9 NORTHLND 138 0.979 -22.1    0.0    0.0   80.1   15.7 

                                                              9129 10 NORTHLND69.0   18.8   -4.6    9.   220 

                                                              9228  9 LAKESHOR 138   17.5    9.6    6.   350 

                                                              9238  9 MAGPLANT 138 -125.6  -20.5   30.   430 

                                                              9275  9 STECK    138   11.4  -12.5    4.   430 

                                                              9285  9 WARREN   138   -2.1   12.4    3.   430 

 ...cont 

 

Probabilistic Model Reports 

    Table 13.4 shows the cross references between ERCOT load flow data and 

NARP generation data.  These have been developed as two separate data bases that 

must be linked together to provide a probabilistic load flow set of data. 

Table 13.4  Generator Cross Reference Table 

Probability Flow Solution Monitor: 

 

                 GENERATOR CROSS REFERENCE 

 -----PROBABILITY------         ----------LOADFLOW--------- 

 S.N.     NAME     CAP3         BUS#        NAME         MW      AREA 

  136    HSTP1    1250.         5911    STP GEN125.0   1250.     HLP 

  148    AHP3      165.         9014    HOLLY G318.0    165.     COA9 

  149    AHP4      181.         9015    HOLLY G420.0    181.     COA9 

  151    ADP2      400.         9001    DECKR G224.0    400.     COA 

  152    AGT1       50.         9002    DECKR G313.8     50.     COA 

  238    LFAY2     575.         7011    FPP GEN2        575.     LCRA 

  ...cont 

 

 #full enumeration gens=     0        20 max 

 total number of gens  =   286       350 max 



 

 165 

Table 13.5  FG(x) First Attempt Using h = 116.394 MW 

 

 Probability generation will not be able to serve load 

 Fast solution using piecewise quadratic math 

 MW per division       =     116.394 

 PQ Convolution Time   =   0h  0m  0s 

 MW total generation   =     58197.0 

    MW   Probability.... . 

  58197  1.000000E+00  1.000000E+00  1.000000E+00  9.999998E-01  9.999996E-01 

  57615  9.999985E-01  9.999951E-01  9.999880E-01  9.999732E-01  9.999468E-01 

  ...cont... 

  25607  3.772649E-35  1.948926E-35  9.955603E-36  5.098358E-36  2.546425E-36 

  25025  1.261509E-36  4.963256E-37  2.216697E-37  6.597283E-38  3.236470E-38 

  24443  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00 

  23861  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00 

 

 F(x) has dropped to zero at lower load levels .     (1E-38 is min possible) 

 Grid MW spacing is being halved to improve results. 

 

Table 13.6  FG(x) Second Attempt Using h = 58.1970 MW 

 

 Probability generation will not be able to serve load 

 Fast solution using piecewise quadratic math 

 MW per division       =     58.1970      (PQ grid spacing) 

 PQ Convolution Time   =   0h  0m  0s 

 MW total generation   =     58197.0 

    MW   Probability..... 

  58197  1.000000E+00  1.000000E+00  1.000000E+00  9.999999E-01  9.999999E-01 

  57906  9.999998E-01  9.999997E-01  9.999996E-01  9.999992E-01  9.999989E-01 

  ...cont... 

  37828  2.713218E-12  2.256595E-12  1.881536E-12  1.567826E-12  1.305600E-12 

  37537  1.086547E-12  9.007740E-13  7.489824E-13  6.178627E-13  5.613284E-13 

 

Table 13.7  FE(x) Exact Solution Using h = 1.0_ MW 

 

 Probability generation will not be able to serve load 

 Exact solution using 1 MW grid increment solution 

 Exact 1 MW convol time=   0h  0m  9s 

 MW total generation   =     58197.0 

    MW   Probability..... 

  58197  1.000000E+00  1.000000E+00  1.000000E+00  9.999999E-01  9.999999E-01 

  57906  9.999998E-01  9.999997E-01  9.999996E-01  9.999993E-01  9.999989E-01 

  ...cont... 

  37828  2.677899E-12  2.226909E-12  1.856488E-12  1.546706E-12  1.287803E-12 

  37537  1.071560E-12  8.882298E-13  7.381390E-13  6.130218E-13  5.087900E-13 
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Table 13.8  (FG(x)FE(x)) /FE(x)  Error In The PQ Convolution 

 

 Probability generation will not be able to serve load 

 PQ per unit error with respect to 1 MW Booth-Baleriaux 

 

  58197    0.00000000    0.00000000    0.00000000   -0.00000006    0.00000000 

  57906    0.00000000    0.00000000    0.00000006   -0.00000006    0.00000000 

  ...cont... 

  37828    0.01318914    0.01333044    0.01349173    0.01365492    0.01381955 

  37537    0.01398659    0.01412272    0.01469016    0.00789680    0.10326142 

 

 

Table 13.9  Real And Virtual Generator Incremental Load Flows Creating Hi,k Factors 

 

 incremental flow monitor ... 

 

   1  DBBRN1     575.0  MW   TO STUDY AREA 

 iter  0   bus 3380  perr=    575.00   bus 5210  qerr=      1.93 

 iter  1   bus 4401  perr=      3.52   bus 2398  qerr=      0.51 

 iter  2   bus 3380  perr=      3.56   bus 3127  qerr=      0.03 

 iter  3   bus 3380  perr=      0.24   bus 4818  qerr=      0.01 

 iter  4   bus 3380  perr=      0.05   bus 3304  qerr=      0.00 

 iter  5   bus 3380  perr=      0.01   bus 3304  qerr=      0.00 

 iter  6   bus 3380  perr=      0.00   bus 3304  qerr=      0.00 

 ...cont... 

   9  COA       1811.2  MW   TO STUDY AREA 

 iter  0   bus 9079  perr=     42.61   bus 9257  qerr=     20.67 

 iter  1   bus 9187  perr=     12.35   bus 9075  qerr=      2.85 

 iter  2   bus 9187  perr=      0.65   bus 9075  qerr=      0.11 

 iter  3   bus 5915  perr=      0.05   bus 7499  qerr=      0.01 

 iter  4   bus 9187  perr=      0.02   bus 7499  qerr=      0.00 

 iter  5   bus 8293  perr=      0.00   bus 7499  qerr=      0.00 

 ...cont... 

 average weighted scale factor =    0.97 %      (avg. percent adjustment) 

 creating GENY.BIN                        (stores H dist. factors) 

 Gen-line dist fac time=   0h  4m 49s 
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    Table 13.10 is a listing of lines in descending order of xminj and xmaxj (the 

column listed as PCT) and the largest Hi,m-n generator to load distribution factors 

(column listed as DIST).  This is the first screening step in deciding which lines to 

monitor for overload.   Some of the top entries have extremely small probabilities of 

~10
-80 

of being highly overloaded as do most of the lines shown below.  Figure 8.1 

shows the typical probability of maximum line MW for ERCOT.  The actual table 

below needs about 500 lines to cover all the ERCOT probabilistic line overloads. 

 

Table 13.10  Lines With Largest Probabilistic MW Overload In Descending Order 

 

 MAXIMUM PROBABILISTIC CIRCUIT LOADS WITH ALL LINES IN SERVICE 

 

 -------FROM------  -------TO--------  RATG   PCT   -GENERATION- to -LOAD-  DIST 

 3391 JEWETT N 345  4676 TOMBAL 5 345   717  315.9  LIMEST 5 345 -> HLP     .196 

   32 ROBERTSN 138  3682 MILANO M 138    84  282.3  DANSBY D     -> LCRA    .105 

 3391 JEWETT N 345  4676 TOMBAL 5 345   717 -276.0  T H W E8 138 -> TU      .198 

 3380 BIGBRN   345  3391 JEWETT N 345  1072 -241.9  TWIN OAK 345 -> TU      .220 

  241 WHITNEY  138   242 WHITNEY 69.0    32 -235.5  WHITNEY 69.0 -> LCRA    .727 

 ...cont 

 

    Table 13.11 shows the results of the zipflow line outages.  This step is 

performed to develop a set of complex line distribution currents that are used to test 

for system separation, used to calculate multiple lines outaged simultaneously, and 

used to create new Hi,m-n line distribution factors for the enumerated many lines 

outaged cases. 

 

Table 13.11  Single Circuit Line Outages Using 1 Amp Injection Currents 

 

 single circuit outage analysis follows... 

 

 OUTAGE OF LINE 3001   9187  DECKER   138  -to-  9000  DECKR G124.0 

 separates the system 

 OUTAGE OF LINE 3059   9166  BRACK   69.0  -to-  9212  HOLLY   69.0 

      overloads 3058   9166  BRACK   69.0  -to-  9204  HARRIS  69.0    100. %   rating=   108 MW 

      overloads 3077   9204  HARRIS  69.0  -to-  9212  HOLLY   69.0    128. %   rating=   108 MW 

 OUTAGE OF LINE 3077   9204  HARRIS  69.0  -to-  9212  HOLLY   69.0 

      overloads 3059   9166  BRACK   69.0  -to-  9212  HOLLY   69.0    128. %   rating=   108 MW 

 ...cont 

           94 lines outaged 

 Single line outags tm =   0h  0m  7s 
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    Table 13.12 is similar to Table 13.11, except the CNTG% column includes 

the effect of the worst single line outage on increasing the xminj and xmaxj flows on 

the line.  The specific line outaged to create this maximum loading is shown, as well 

as the modified largest Hi,m-n line distribution factor for this single line outage case.  

This table was initially used as one the of ways to check the correctness of the 

process of updating the Hi,m-n factors (column DIST).  The PLF now uses this table 

information in the final screening process of selecting lines to monitor/not monitor. 

 

Table 13.12  Lines Selected For Monitoring Based First Line Outages Max Flows 

 

 LINES SELECTED FOR OUTAGE/MONITORING IN PROBABILISTIC MODELS 

 

 -------FROM------  -------TO--------  RATG  CNTG%  BASE%  DIST  --OUTAGE-- 

 7334 MCNEIL 8 138  9079 MCNEILN  138   382  210.3  188.3  .263  7328  9076 

 9076 MCNEILW  138  9077 MCNEILS  138   430  161.1  126.1  .248  9124  9291 

 9166 BRACK   69.0  9212 HOLLY   69.0   108 -117.5  -76.0  .144  9204  9212 

 9129 NORTHLND69.0  9226 KOENIG  69.0   215  117.1   52.2  .231  9212  9243 

 9129 NORTHLND69.0  9128 NORTHLND 138   220 -114.4  -51.1  .231  9212  9243 

 ...cont 

 

Table 13.13  Final Selection Of Lines To Monitor And To Outage
1
 

 

 LINES SELECTED FOR OUTAGE/MONITORING IN PROBABILISTIC MODELS 

 

 --#-  -------FROM------  -------TO--------  OUT MON 

    1  7202 HICROSS8 138  9147 HICRSMB2 138   0   1 

    2  7328 AUSTROP8 138  9076 MCNEILW  138   0   1 

   15  9075 LYTTON   138  9257 PILOT KB 138   1   1 

   16  9075 LYTTON   138  9267 SLAUGHTR 138   0   1 

   17  9076 MCNEILW  138  9077 MCNEILS  138   1   1 

 ...cont 

 

 writing line outage file, size in bytes=     40328.0 

 writing transpose of line outage file 

 

           71 lines saved for further analysis 

 Selection of lines tm =   0h  0m  2s 

                                                 
1
 Only City of Austin lines are monitored and outaged in this example. 
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    The next steps are to calculate the probabilistic line flows Fj(x) and then 

perform the heuristic load sheddings.  Table 13.14 shows overall probabilities going 

into the study.  The numbers assume that all lines outside the 71 lines outaged in the 

City of Austin system have 100% reliability.  All numbers below assume two state 

models for both generation and transmission.  The double outage line contingencies 

plus the total probability space of all generator outages almost completely covers all 

the probability space of this problem. 

 

Table 13.14  The Analysis Of Probabilistic Line Loadings And Load Sheddings 

 

 BEGIN LARGE SYSTEM ANALYSIS OF ALL GENERATION STATES 

 

 number of lines outaged                       =       16      500 max 

 maximum number of lines out simultaneously    =        2 

 number of generators outaged                  =      286      350 max 

 number of load areas                          =        9 

 total probability of all line states run      = 1.0000E+00 

 total probability of all line states not run  = 4.3935E-06      (only COA lines) 

 probability outaged lines are in service      = 9.6848E-01 

 probability outaged generators are in service = 1.5296E-12 

 probability outaged lines & gens are in servc = 1.4814E-12 

 maximum number of transmission line states    = 6.554e   4 

 maximum number of generator states            = 1.243e  86 

 maximum number of generator and line states   = 8.148e  90 

 

 *********************************************** 

 analyzing system for number of circuits out = 0 

 *********************************************** 

 

 line overloaded :      109.0%      7202-9147     HICROSS8 138 - HICRSMB2 138 

    1 skipped    :   Prob= 0.32484E-19 

 

 line overloaded :      119.4%      7328-9187     AUSTROP8 138 - DECKER   138 

    3 ratg=  430. MW    max loading=  513. MW    min loading= -465. MW 

 genr prob=0.000000000004   line prob=0.968479803971   prob ovld=0.000000000004 

  GENERATOR        LOAD AREA    DIST FACT    LINE MW     SHED MW 

  238 LFAY2        10 COA9      0.190031      14.063      74.003       (offending gen. 

  237 LFAY1        10 COA9      0.190031      14.552      76.577        and load pair) 

  137 HSTP2        10 COA9      0.183833       9.559      52.000 

  136 HSTP1        10 COA9      0.183833       9.559      52.000 

  235 LGID3         7 LCRA      0.073332      24.200     330.000 

  233 LGID1         7 LCRA      0.073160       9.877     135.000 

  234 LGID2         7 LCRA      0.073160       1.529      20.897 

 ...cont 

 

 line overloaded :     -108.2%      7328-9187     AUSTROP8 138 - DECKER   138 

    3 skipped    :   Prob= 0.00000E+00 
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Table 13.14  (cont) 

 

 line overloaded :      188.3%      7334-9079     MCNEIL 8 138 - MCNEILN  138 

    4 ratg=  382. MW    max loading=  719. MW    min loading= -612. MW 

 genr prob=0.000000013930   line prob=0.968479803971   prob ovld=0.000000013491 

  GENERATOR        LOAD AREA    DIST FACT    LINE MW     SHED MW 

  136 HSTP1         9 COA       0.262630      38.869     148.000      (jointly owned) 

  137 HSTP2         9 COA       0.262630      38.869     148.000 

  238 LFAY2         9 COA       0.252930      53.273     210.622 

  237 LFAY1         9 COA       0.252929      55.125     217.948 

  245 LMFD2         6 WTU    *  0.230994       2.079       9.000      (a power sale ) 

  244 LMFD1         7 LCRA      0.206246       7.012      34.000 

  246 LMFD3         7 LCRA      0.206035       7.005      34.000 

  250 LMFL2         7 LCRA      0.147180       2.355      16.000 

  249 LMFL1         7 LCRA      0.147179       2.355      16.000 

  231 LBUCH1        7 LCRA      0.119576       1.555      13.000 

  236 LFRG          7 LCRA      0.115794      49.212     425.000 

  248 LWRTZ2        7 LCRA      0.113934       2.962      26.000 

  247 LWRTZ1        7 LCRA      0.113626       2.954      26.000 

  232 LBUCH2        7 LCRA      0.110317       1.434      13.000 

  241 LINKS         7 LCRA      0.100991       1.212      12.000 

  240 LBUCH3        7 LCRA      0.100864       1.311      13.000 

  152 AGT1          9 COA       0.068239       3.412      50.000 

  153 AGT2          9 COA       0.068239       3.412      50.000 

  154 AGT3          9 COA       0.068239       3.412      50.000 

  155 AGT4          9 COA       0.068239       3.412      50.000 

  150 ADP1          9 COA       0.067777      15.548     229.400 

  151 ADP2          9 COA       0.067607      20.012     296.000 

   57 DALCOA        1 TU        0.062538       5.003      80.000 

    9 DSAND4        1 TU        0.062413      15.520     248.671 

 ...cont 

 

 line overloaded :     -160.1%      7334-9079     MCNEIL 8 138 - MCNEILN  138 

    4 skipped    :   Prob= 0.33399E-29 

 

 line overloaded :      126.1%      9076-9077     MCNEILW  138 - MCNEILS  138 

   17 skipped    :   Prob= 0.41408E-12 

 

 line overloaded :      111.3%      9076-9079     MCNEILW  138 - MCNEILN  138 

   18 skipped    :   Prob= 0.00000E+00 

 

 line overloaded :     -109.5%      9076-9079     MCNEILW  138 - MCNEILN  138 

   18 skipped    :   Prob= 0.00000E+00 

 ...cont 

 

 

 *******************DEFINITIONS************************      (defines column headings 

 I3=line number to unload in selected line outage table        in the next report) 

 IG=generator number in INPUTB file in which to shed MW 

 J3=firm power contract number in INPUTB file 

 IA=area number in loadflow data in which to shed MW 

 T1=per unit power in line I3 from IG to IA shedding 

 T5=+1 or -1 for forward or reverse line flow in I3 

 DX=increment of MW unloaded in line I3 

 T6=the total MW unloaded in I3 

 T4=MW load shed for this column slice 

 PROB=ENG/DX, average incremental probability 

 ENG=energy in MWH associated with PROB column slice 

 ****************************************************** 
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Table 13.14 (cont) 

 

 unload line     :        7334  MCNEIL 8 138  -        9079  MCNEILN  138 

  I3  IG  J3  IA     T1    T5   DX      T6      T4      PROB         ENG 

   4 136   0   9  0.26263  1.  33.7   415.7   128.4  0.3227E-08  0.1089E-06 

   4 136   0   9  0.26263  1.   5.1   420.9    19.6  0.9716E-10  0.4992E-09 (load 

   4 137   0   9  0.26263  1.  33.7   454.6   128.4  0.1128E-10  0.3806E-09 shedding 

   4 137   0   9  0.26263  1.   5.1   459.7    19.6  0.9323E-13  0.4790E-12 delta MW 

   4 238   0   9  0.25293  1.  33.7   493.5   133.4  0.7261E-14  0.2449E-12 increment) 

 line is unloaded:        XMW=     399.089            XMWH=    4.046634E-07 

        from peak:         MW=     28298.0              % =     48.6245     (location 

                                                                            on x axis) 

 unload line     :        7328  AUSTROP8 138  -        9187  DECKER   138 

  I3  IG  J3  IA     T1    T5   DX      T6      T4      PROB         ENG 

   3 238   0  10  0.19003  1.   8.3   438.4    43.9  0.1825E-11  0.1521E-10 

 line is unloaded:        XMW=     434.186            XMWH=    7.749310E-11 

        from peak:         MW=     2119.00              % =     3.64108 

 ...cont 

 

 *********************************************** 

 analyzing system for number of circuits out = 1       (all single line outages) 

 *********************************************** 

 

 ------------------------------------------------------------------------------ 

 line state:    2  outage line(s): 9075-9257     LYTTON   138 - PILOT KB 138 

 

 line overloaded :     -107.2%      7202-9147     HICROSS8 138 - HICRSMB2 138 

    1 skipped    :   Prob= 0.00000E+00 

 

 line overloaded :      140.9%      7328-9187     AUSTROP8 138 - DECKER   138 

    3 ratg=  430. MW    max loading=  606. MW    min loading= -521. MW 

 genr prob=0.000000144006   line prob=0.001940841291   prob ovld=0.000000000279 

  GENERATOR        LOAD AREA    DIST FACT    LINE MW     SHED MW 

  238 LFAY2        10 COA9      0.225707      16.703      74.002 

  237 LFAY1        10 COA9      0.225707      17.284      76.576 

  137 HSTP2        10 COA9      0.218972      11.387      52.000 

  136 HSTP1        10 COA9      0.218972      11.387      52.000 

  235 LGID3         7 LCRA      0.068650      22.655     330.000 

  233 LGID1         7 LCRA      0.068570       9.257     135.000 

  234 LGID2         7 LCRA      0.068570       9.257     135.000 

  239 LFAY3         7 LCRA      0.053113      22.042     415.000 

  275 TGBCR1        7 LCRA   *  0.046225       0.139       3.000 

  145 HUNSP1        1 TU     *  0.005376       0.419      78.002 

  168 CLAR 3        6 WTU    *  0.005177       0.124      24.004 

 ...cont 

 

 unload line     :        7334  MCNEIL 8 138  -        9079  MCNEILN  138 

  I3  IG  J3  IA     T1    T5   DX      T6      T4      PROB         ENG 

   4 136   0   9  0.28236  1.  34.0   416.0   120.4  0.1739E-06  0.5911E-05 

   4 136   0   9  0.28236  1.   7.8   423.8    27.6  0.1172E-07  0.9127E-07 

   4 137   0   9  0.28236  1.  34.0   457.8   120.4  0.1570E-08  0.5337E-07 

   4 137   0   9  0.28236  1.   7.8   465.6    27.6  0.3217E-10  0.2506E-09 

   4 238   0   9  0.27300  1.  34.0   499.6   124.5  0.2568E-11  0.8730E-10 

   4 238   0   9  0.27300  1.  23.5   523.1    86.1  0.3630E-14  0.8530E-13 

 line is unloaded:        XMW=     399.687            XMWH=    4.162872E-08 

        from peak:         MW=     28298.0              % =     48.6245 

 ...cont 
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Table 13.14 (cont) 

 

 unload line     :        7328  AUSTROP8 138  -        9187  DECKER   138 

  I3  IG  J3  IA     T1    T5   DX      T6      T4      PROB         ENG 

   3 238   0  10  0.22571  1.  16.7   459.7    74.0  0.1539E-07  0.2570E-06 

   3 237   0  10  0.22571  1.  17.3   477.0    76.6  0.1903E-08  0.3289E-07 

   3 137   0  10  0.21897  1.  11.4   488.4    52.0  0.2383E-09  0.2714E-08 

   3 136   0  10  0.21897  1.  11.4   499.8    52.0  0.4373E-10  0.4979E-09 

   3 235   0   7  0.06865  1.  17.6   517.4   256.0  0.5123E-11  0.9004E-10 

   3 235   0   7  0.06865  1.   5.1   522.4    74.0  0.5124E-12  0.2603E-11 

   3 233   0   7  0.06857  1.   9.3   531.7   135.0  0.1465E-12  0.1356E-11 

   3 234   0   7  0.06857  1.   9.3   541.0   135.0  0.2316E-13  0.2144E-12 

   3 239   0   7  0.05311  1.  17.6   558.5   330.9  0.1973E-14  0.3467E-13 

   3 239   0   7  0.05311  1.   4.5   563.0    84.1  0.7848E-16  0.3507E-15 

 line is unloaded:        XMW=     453.723            XMWH=    2.524256E-09 

        from peak:         MW=     2119.00              % =     3.64108 

 

 unload line     :        9075  LYTTON   138  -        9267  SLAUGHTR 138 

  I3  IG  J3  IA     T1    T5   DX      T6      T4      PROB         ENG 

  16 237   0  10  0.18128  1.  12.6   447.2    69.4  0.5472E-09  0.6882E-08 

 line is unloaded:        XMW=     440.937            XMWH=    7.368104E-11 

        from peak:         MW=     3493.00              % =     6.00203 

 ...cont 

 

 *********************************************** 

 analyzing system for number of circuits out = 2       (all double line outages) 

 *********************************************** 

 

 ------------------------------------------------------------------------------ 

 line state:   18  outage line(s): 9075-9257     LYTTON   138 - PILOT KB 138 

                                   9076-9077     MCNEILW  138 - MCNEILS  138 

 

 line overloaded :     -116.3%      7202-9147     HICROSS8 138 - HICRSMB2 138 

    1 skipped    :   Prob= 0.00000E+00 

 

 line overloaded :      149.0%      7328-9187     AUSTROP8 138 - DECKER   138 

    3 ratg=  430. MW    max loading=  641. MW    min loading= -537. MW 

 genr prob=0.000002035328   line prob=0.000003889462   prob ovld=0.000000000008 

  GENERATOR        LOAD AREA    DIST FACT    LINE MW     SHED MW 

  238 LFAY2        10 COA9      0.247435      18.311      74.002 

  237 LFAY1        10 COA9      0.247435      18.948      76.577 

  137 HSTP2        10 COA9      0.240985      12.531      52.000 

  136 HSTP1        10 COA9      0.240985      12.531      52.000 

  235 LGID3         7 LCRA      0.066436      21.924     330.000 

  233 LGID1         7 LCRA      0.066355       8.958     135.000 

  234 LGID2         7 LCRA      0.066355       8.958     135.000 

  239 LFAY3         7 LCRA      0.051201      21.248     415.000 

  275 TGBCR1        7 LCRA   *  0.045528       0.137       3.000 

  145 HUNSP1        1 TU     *  0.003782       0.295      78.007 

  278 TEXASA        8 S.TEX. *  0.003076       0.055      17.998 

  168 CLAR 3        6 WTU    *  0.003033       0.073      24.004 

 ...cont 

 

 unload line     :        7328  AUSTROP8 138  -        9187  DECKER   138 

  I3  IG  J3  IA     T1    T5   DX      T6      T4      PROB         ENG 

   3 238   0  10  0.24743  1.  18.3   448.3    74.0  0.1028E-05  0.1882E-04 

 line is unloaded:        XMW=     439.155            XMWH=    2.958888E-10 

        from peak:         MW=     2119.00              % =     3.64108 

...cont
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    Table 13.15 is the final output report showing the City of Austin Area 9 LOLP 

and EUE.  Columns 3 and 5 are generation only.  Columns 4 and 6 are transmission 

LOLP and EUE.  The program calculates column 6 first and then calculates the 

transmission LOLP from the transmission EUE.  The last column to the right is the 

ratio of transmission EUE to generation EUE versus % load level.  All the EUE 

values are for a one hour period. 

 

Table 13.15  Final Reliability Output Report For COA 138 kV System 

 

 AREA  9  COA   : 

 

 LOAD%  LOAD-MW   LOLP       TLOP       EUE-MWh    TEUE-MWh    TOTL-MWh  T/G EUE 

  65.0   1190  0.0000000  0.0000000    0.000000    0.000000    0.000000  11. 

  66.0   1209  0.0000000  0.0000000    0.000000    0.000000    0.000000  5.7 

  67.0   1227  0.0000000  0.0000000    0.000000    0.000000    0.000000  2.8 

  68.0   1245  0.0000000  0.0000000    0.000000    0.000000    0.000000  1.4 

  69.0   1263  0.0000000  0.0000000    0.000000    0.000000    0.000000 0.74 

  70.0   1282  0.0000000  0.0000000    0.000000    0.000000    0.000000 0.39 

  71.0   1300  0.0000000  0.0000000    0.000001    0.000000    0.000001 0.21 

  72.0   1318  0.0000002  0.0000000    0.000002    0.000000    0.000003 0.11 

  73.0   1337  0.0000007  0.0000000    0.000010    0.000001    0.000011 6.31E-02 

  74.0   1355  0.0000027  0.0000000    0.000038    0.000001    0.000039 3.54E-02 

  75.0   1373  0.0000092  0.0000001    0.000135    0.000003    0.000138 2.01E-02 

  76.0   1392  0.0000295  0.0000002    0.000456    0.000005    0.000461 1.15E-02 

  77.0   1410  0.0000892  0.0000003    0.001449    0.000010    0.001458 6.72E-03 

  78.0   1428  0.0002538  0.0000005    0.004345    0.000017    0.004363 3.97E-03 

  79.0   1447  0.0006791  0.0000007    0.012297    0.000029    0.012327 2.38E-03 

  80.0   1465  0.0017096  0.0000011    0.032840    0.000047    0.032887 1.45E-03 

  81.0   1483  0.0040467  0.0000016    0.082759    0.000074    0.082833 8.92E-04 

  82.0   1501  0.0090027  0.0000021    0.196834    0.000110    0.196944 5.59E-04 

  83.0   1520  0.0188139  0.0000028    0.441842    0.000158    0.442000 3.57E-04 

  84.0   1538  0.0369096  0.0000034    0.936138    0.000217    0.936354 2.31E-04 

  85.0   1556  0.0679281  0.0000040    1.872245    0.000286    1.872532 1.53E-04 

  86.0   1575  0.1171925  0.0000043    3.535246    0.000364    3.535610 1.03E-04 

  87.0   1593  0.1894137  0.0000045    6.304651    0.000446    6.305098 7.08E-05 

  88.0   1611  0.2866856  0.0000045   10.625719    0.000529   10.626248 4.98E-05 

  89.0   1630  0.4063490  0.0000044   16.941426    0.000608   16.942034 3.59E-05 

  90.0   1648  0.5398202  0.0000035   25.592141    0.000676   25.592815 2.64E-05 

  91.0   1666  0.6735421  0.0000027   36.712231    0.000731   36.712963 1.99E-05 

  92.0   1685  0.7924315  0.0000022   50.167000    0.000778   50.167778 1.55E-05 

  93.0   1703  0.8847363  0.0000020   65.568379    0.000814   65.569191 1.24E-05 

  94.0   1721  0.9459667  0.0000020   82.375847    0.000837   82.376686 1.02E-05 

  95.0   1740  0.9796151  0.0000009  100.041552    0.000854  100.042404 8.54E-06 

  96.0   1758  0.9942483  0.0000007  118.134692    0.000867  118.135559 7.34E-06 

  97.0   1776  0.9989305  0.0000006  136.392331    0.000878  136.393204 6.44E-06 

  98.0   1794  0.9998996  0.0000011  154.694999    0.000881  154.695877 5.69E-06 

  99.0   1813  0.9999980  0.0000027  173.005241    0.000929  173.006165 5.37E-06 

 100.0   1831  1.0000000  0.0000016  191.315913    0.000965  191.316879 5.04E-06 

                 Minimum MWH that can be shed =    0.000459      (if all dist fact =1) 
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Table 13.16  Final Reliability Output Report For COA 69 kV System 

 

 AREA 10  COA9  : 

 

 LOAD%  LOAD-MW   LOLP       TLOP       EUE-MWh    TEUE-MWh    TOTL-MWh  T/G EUE 

  65.0    373  0.0000000  0.0000000    0.000000    0.000000    0.000000 2.50E+04 

  66.0    378  0.0000000  0.0000000    0.000000    0.000000    0.000000 7.84E+03 

  67.0    384  0.0000000  0.0000001    0.000000    0.000001    0.000001 2.50E+03 

  68.0    390  0.0000000  0.0000001    0.000000    0.000001    0.000001 8.15E+02 

  69.0    395  0.0000000  0.0000002    0.000000    0.000002    0.000002 2.66E+02 

  70.0    401  0.0000000  0.0000002    0.000000    0.000003    0.000003  82. 

  71.0    407  0.0000000  0.0000002    0.000000    0.000004    0.000005  24. 

  72.0    413  0.0000002  0.0000002    0.000001    0.000006    0.000006  7.2 

  73.0    418  0.0000007  0.0000003    0.000003    0.000007    0.000010  2.2 

  74.0    424  0.0000027  0.0000004    0.000012    0.000009    0.000021 0.76 

  75.0    430  0.0000092  0.0000007    0.000042    0.000012    0.000055 0.29 

  76.0    436  0.0000295  0.0000009    0.000143    0.000017    0.000160 0.12 

  77.0    441  0.0000892  0.0000009    0.000453    0.000022    0.000476 4.95E-02 

  78.0    447  0.0002538  0.0000009    0.001360    0.000028    0.001388 2.03E-02 

  79.0    453  0.0006791  0.0000009    0.003849    0.000033    0.003882 8.56E-03 

  80.0    458  0.0017096  0.0000010    0.010278    0.000039    0.010317 3.75E-03 

  81.0    464  0.0040467  0.0000015    0.025902    0.000046    0.025948 1.79E-03 

  82.0    470  0.0090027  0.0000023    0.061604    0.000059    0.061662 9.50E-04 

  83.0    476  0.0188139  0.0000026    0.138285    0.000073    0.138358 5.29E-04 

  84.0    481  0.0369096  0.0000027    0.292987    0.000088    0.293076 3.02E-04 

  85.0    487  0.0679281  0.0000028    0.585965    0.000104    0.586069 1.78E-04 

  86.0    493  0.1171925  0.0000031    1.106443    0.000121    1.106564 1.10E-04 

  87.0    499  0.1894137  0.0000043    1.973196    0.000144    1.973340 7.31E-05 

  88.0    504  0.2866856  0.0000056    3.325581    0.000175    3.325756 5.26E-05 

  89.0    510  0.4063490  0.0000065    5.302237    0.000211    5.302448 3.98E-05 

  90.0    516  0.5398202  0.0000065    8.009692    0.000248    8.009940 3.10E-05 

  91.0    522  0.6735421  0.0000066   11.489998    0.000286   11.490284 2.49E-05 

  92.0    527  0.7924315  0.0000067   15.701000    0.000324   15.701324 2.06E-05 

  93.0    533  0.8847363  0.0000074   20.521242    0.000365   20.521606 1.78E-05 

  94.0    539  0.9459667  0.0000091   25.781554    0.000415   25.781969 1.61E-05 

  95.0    544  0.9796151  0.0000110   31.310472    0.000476   31.310947 1.52E-05 

  96.0    550  0.9942483  0.0000110   36.973166    0.000539   36.973705 1.46E-05 

  97.0    556  0.9989305  0.0000110   42.687345    0.000602   42.687946 1.41E-05 

  98.0    562  0.9998996  0.0000106   48.415616    0.000664   48.416279 1.37E-05 

  99.0    567  0.9999980  0.0000084   54.146258    0.000716   54.146973 1.32E-05 

 100.0    573  1.0000000  0.0000023   59.877035    0.000740   59.877773 1.24E-05 

                 Minimum MWH that can be shed =    0.000317 

 

    Notice that the transmission LOLP need not be monotone decreasing.  

However, the sum of the transmission LOLP and the generation LOLP must be 

monotone decreasing.  100% load means a load level equal to 100% of owned 

capacity by the area listed.  In this example, the City of Austin transmission system 

appears to be very reliable.  The minimum MWH that can be shed assumes all H’s 

are exactly one. 
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Table 13.17  Final Reliability Output Report For The Total System 

 TOTAL SYSTEM:                                        (only has the COA line outages) 

 

 LOAD%  LOAD-MW   LOLP       TLOP       EUE-MWh    TEUE-MWh    TOTL-MWh  T/G EUE 

  65.0  37828  0.0000000  0.0000000    0.000000    0.000000    0.000000 8.09E-05 

  66.0  38410  0.0000000  0.0000000    0.000000    0.000000    0.000000 4.67E-05 

  67.0  38992  0.0000000  0.0000000    0.000000    0.000000    0.000000 8.75E-05 

  68.0  39574  0.0000000  0.0000000    0.000000    0.000000    0.000000 1.11E-04 

  69.0  40156  0.0000000  0.0000000    0.000001    0.000000    0.000001 9.57E-05 

  70.0  40738  0.0000000  0.0000000    0.000004    0.000000    0.000004 7.21E-05 

  71.0  41320  0.0000000  0.0000000    0.000018    0.000000    0.000018 5.51E-05 

  72.0  41902  0.0000002  0.0000000    0.000079    0.000000    0.000079 3.98E-05 

  73.0  42484  0.0000007  0.0000000    0.000317    0.000000    0.000317 2.90E-05 

  74.0  43066  0.0000027  0.0000000    0.001202    0.000000    0.001202 2.13E-05 

  75.0  43648  0.0000092  0.0000000    0.004296    0.000000    0.004296 1.59E-05 

  76.0  44230  0.0000295  0.0000000    0.014482    0.000000    0.014482 1.20E-05 

  77.0  44812  0.0000892  0.0000000    0.046045    0.000000    0.046046 9.15E-06 

  78.0  45394  0.0002538  0.0000000    0.138110    0.000001    0.138111 7.05E-06 

  79.0  45976  0.0006791  0.0000000    0.390850    0.000002    0.390852 5.49E-06 

  80.0  46558  0.0017096  0.0000000    1.043745    0.000005    1.043750 4.32E-06 

  81.0  47140  0.0040467  0.0000000    2.630346    0.000009    2.630355 3.43E-06 

  82.0  47722  0.0090027  0.0000000    6.255971    0.000017    6.255988 2.75E-06 

  83.0  48304  0.0188139  0.0000000   14.043084    0.000031   14.043116 2.22E-06 

  84.0  48885  0.0369096  0.0000000   29.753304    0.000054   29.753357 1.81E-06 

  85.0  49467  0.0679281  0.0000001   59.505642    0.000088   59.505730 1.48E-06 

  86.0  50049  0.1171925  0.0000001  112.360863    0.000137  112.361000 1.22E-06 

  87.0  50631  0.1894137  0.0000001  200.380966    0.000202  200.381165 1.01E-06 

  88.0  51213  0.2866856  0.0000001  337.717621    0.000282  337.717896 8.35E-07 

  89.0  51795  0.4063490  0.0000002  538.449951    0.000375  538.450317 6.96E-07 

  90.0  52377  0.5398202  0.0000002  813.395935    0.000472  813.396423 5.81E-07 

  91.0  52959  0.6735421  0.0000002 1166.826172    0.000568 1166.826782 4.86E-07 

  92.0  53541  0.7924315  0.0000001 1594.459595    0.000653 1594.460205 4.10E-07 

  93.0  54123  0.8847363  0.0000001 2083.962158    0.000723 2083.962891 3.47E-07 

  94.0  54705  0.9459667  0.0000001 2618.154541    0.000775 2618.155273 2.96E-07 

  95.0  55287  0.9796151  0.0000001 3179.624268    0.000813 3179.625000 2.56E-07 

  96.0  55869  0.9942483  0.0000000 3754.679199    0.000839 3754.679932 2.23E-07 

  97.0  56451  0.9989305  0.0000000 4334.962402    0.000863 4334.963379 1.99E-07 

  98.0  57033  0.9998996  0.0000002 4916.676758    0.000934 4916.677734 1.90E-07 

  99.0  57615  0.9999980  0.0000006 5498.631836    0.001214 5498.632813 2.21E-07 

 100.0  58197  1.0000000  0.0000010 6080.600586    0.001704 6080.602051 2.80E-07 

                 Minimum MWH that can be shed =    0.000776 

          :         :          :       :            :                       : 

  Installed         :          :       :            : Ratio of unserved energies 

 Generation         :          :       :            : Transmission to Generation 

                    :          :       :            : 

   Probability of not          :       :   Additional unserved MWH due 

   serving load at             :       :   to transmission constraints 

   system peak hour            :       : 

                               :       : 

        Probability transmission       Unserved MWH during the peak load hour 

        will be a bottleneck           due only to insufficient generation 

 

 large system analysis completed 

 # xmissn states examined  =         137 

 Prob of system separation =    0.1556E-04 

 Prob of untested states   =    0.4255E-05 

 Prob of all states tested =    0.999996 

 Large System run time     0h 28m 14s 

 Total run time            0h 34m 27s       (excellent for ~1.E90 outage configs) 
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Chapter 14 

Conclusions and Recommendations 
 

    A new model is presented in this dissertation for calculating generation 

reliability with transmission constraints in large electric power systems.  The large 

networks today are highly interconnected through high voltage transmission lines to 

reduce costs and improve reliability.  The sharing of generation reserves greatly 

improves power supply reliability.  Economy energy transfers reduce operating costs.  

By design, today’s systems have a high degree of freedom to dispatch scheduled 

generation from any generator to any load area.  This high degree of interconnectivity 

also allows an extremely large number of unscheduled random generator outage 

configurations to be possible.  A network with 300 generators (such as the ERCOT 

system) has ~10
90

 configurations in which the generators can randomly fail.  Many of 

these configurations will cause transmission line flows exceeding line capacities.  

The chance that any one of these configurations will occur is very small, but 

collectively, their effect on total system reliability is significant and measurable. 

    The PLF model presented in this dissertation is new because a convolution 

solution approach allows the complete set of generation outage configurations to be 

modeled for every line outage configuration.  Computation time is excellent.  The 

ERCOT system example presented in Chapter 13 modeled ~10
90

 generation outage 

configurations for each of the 137 COA area line outage configurations with a total 

computation time of 35 minutes on a 75 MHz Pentium personal computer.  The PLF 

model is the first in the industry to include the complete set of probabilistic line flows 

due to all generation outage configurations as a normal part of the planning analysis 

of the transmission system. 
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    All the other composite generation-transmission system models being 

marketed use enumeration techniques to model both the generation and transmission 

outage configurations.  Enumeration of transmission outage configurations can be 

used to cover a majority of the transmission failure events probability space because 

the outage rates of lines are very small.  However, the outage rates of generators are 

not small.  In a large system several generators will be outaged at any one time.  This 

creates a computer run-time problem for solution approaches using enumeration of 

generation outages for large systems.  Execution times of days and weeks are 

common for a single case, and results are always questionable.  For this reason, the 

composite generation-transmission models have not been widely accepted by the 

engineers planning and operating the large systems. 

    The convolution techniques used in this dissertation overcome the problem of 

extremely long computer run times associated with the modeling of generation outage 

configurations.  The model presented in this dissertation has the following desirable 

features. 

 

 Larger networks can be modeled with this PLF model than the best of the others. 

 A full transmission network is represented, eliminating the need for an 

equivalent. 

 All generation outage states are modeled exhaustively (completely). 

 Transmission outages are enumerated quickly with an efficient line outage model. 

 Solution times are in hours instead of days (needed by other computer programs). 

 Loss of load due to generation outages is uniform throughout the network. 

 Loss of load due to transmission constraints is assigned to specific lines, 

generators, and loads in a near optimal manner. 
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    The PLF model is not a complete model in the sense that no further 

improvements are necessary.  The author’s recommendations for continuing work 

with this model are listed below. 

 

 Incorporate the three state generator outage model in the PLF program. 

 Add to the PLF model the EUE load shed MWh due to system separations. 

 Further review the theory and operation of the load shedding heuristic to see if 

improvements in its performance can be made. 

 Investigate the feasibility of adding the frequency of load sheddings as a part of 

the convolution process presented in this dissertation. 

 Increase the PLF load flow model from its present 5000 buses to 50000 buses for 

the purpose of testing the reliability of the eastern and western electric power 

systems. 

 Conduct an analysis of the generation and transmission reliability of every area in 

ERCOT for the purpose of determining how well the City of Austin compares 

with the other areas in overall reliability and to identify those components within 

the COA system that are causing any reliability deficiencies. 

 

    The author believes the methods presented in this dissertation represent 

important advancements to the present state of knowledge concerning the assessment 

of power system reliability.  At this time, the PLF model is unique in the electric 

utility industry. 
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Appendix A 

Derivations 

Derivation of Equation 3.11 

    Given any finite continuous, discontinuous, or discrete density function f(x) or 

continuous or discontinuous cumulative distribution F(x), the convolution of a very 

small width rectangular block function of width x and heighth 1/x located at x = a 

with the f(x) or F(x) function causes a shift of the f(x) or F(x) function as shown in 

Figure A.1.  For finite x, the shift is aproximate.  In the limit as x0, the shift of 

f(x) to the right by a is an exact process. 

 

 

  1/x 

           f(x)                          f(xa) 

 

      x 

     0     a                   0 

Figure A.1  Convolution of an Impulse Function With f(x) 

 

This can be written as an impulse function (xa) replacing the rectangular section.  

Convolving the impulse function with f(x) produces 

 

                   


  
              f(x)

+
  =  f(y)(xya) dy  =  f(xa) .        (A.1) 

                    
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The f(x)
+
 is the function after convolution.  The original f(x) function before 

convolution is simply shifted to the right by a as a result of the convolution. 

 

    The three state generator model (Table 3.1) can be written as an impulse 

function.  For any generator k, let the state probabilities be pu = 1DFORkFORk for 

the up state,  pd = DFORk for the derated state, and po = FORk for the outaged state.  

The convolution of these generator k states into the cumulative distribution F(x) is 

given in Equation A.2 as 

 

           


  
     F(x)

+
  =  F(y)[pu(xy) + pd(xyDk) + po(xyCk)]dy .    (A.2) 

            

 

Evaluating Equation A.2 produces 

 

          F(x)
+  

=  puF(x) + pdF(xDk) + poF(xCk)  .         (A.3) 
 

Equation A.3 is equivalent to Equation 3.11 which completes the derivation. 
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Derivation of Equation 3.13 

    A simple notation is used to develop the piecewise quadratic function shown 

in Equation 3.13.  The resulting equation from the simpler notation derivation is 

shown to be equivalent to Equation 3.13.  Figure A.2 shows a quadratic curve fit of 

any three consecutive evenly spaced points on F(x) with values F1 , F0 , and F+1 .  

The discrete points are located at points x=r, x=0, and x=r, respectively, where 

1  r < 1.  A, B, and C are dummy coefficients in the quadratic equation 

Fr=Ar
2
+ B r + C .  Fr provides a smooth function interpolation of the discrete points. 

 

               F-1  

                       F0 

 

                              F+1 

 

 

     local range  r :   1        0       +1  

Figure A.2  Piecewise Quadratic Spline Fr 

 

Solving for coefficients A, B, and C: 

             1.   F1  =  A   B   +C 

             2.   F0  =         C 

             3.   F+1  =  A   +B   +C            (A.4) 

 

Then                  C = F0                  (A.5) 

Adding 1 and 3         F-1 + F+1 = 2A + 2F0             (A.6) 

Solving for A         A = ½F-1 - F0 + ½F+1              (A.7) 
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Subtracting 1 from 3      F+1  F1 = 2B                 (A.8) 

Solving for B         B =  ½F+1  ½F1                (A.9) 

 

Inserting the A, B, C coefficients into the original equation 

        Fr =  (½F-1 - F0 + ½F+1)r
2
  +  (½F+1  ½F1)r  +  F0       (A.10) 

 

Collecting common F terms gives 

         Fr =  (½r
2 
- ½r)F-1 +  (1  r

2
)F0  + (½r

2
 + ½r)F+1       (A.11) 

 

Equation A.11 is the same as Equation 3.13 which completes the derivation. 



 

 183 

Derivation of Equation 3.14 

    The convolution process uses an interpolation of Fr between the left most and 

central points as shown in Figure A.3.  The shift of Fr in the convolution process is 

done by calculating the interpolated function values for D MW and C MW (shown 

below) for the derated and full outaged capacity states respectively.  This is most 

convenient if the direction of r is reversed from that shown in Figure A.2.  So Figure 

A.3 shows positive interpolation r to the left of discrete point Fi-j.  New point Fi
+
 

value is calculated from the original function to the left by C MW.  The C and D MW 

consists of a number of integer steps j plus a fractional part of a step r.  The j and r 

are calculated from the equation C = h(jc+rc) where h is the grid increment MW step 

size.  The derated state is shifted by D = h(jd+rd) MW. 

 

 

               F i-j-1            C  or D     Fi
+ 

                       Fi-j 

 

                              Fi-j+1 

                    r 

                            j 

     local range  r :  +1        0       1  

Figure A.3  Piecewise Quadratic Interpolation 

 

 

Inserting negative r into Equation A.11 produces 

        Fr =  (½r
2 
+ ½r)F-1 +  (1  r

2
)F0  + (½r

2
 - ½r)F+1      (A.12) 
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    Let the generator state probabilities be pu, pd, and po for the up, derated, and 

outaged states.  For any new x = ih discrete point on the F(ih)
+
 function, the 

convolution Equation A.3 becomes 

 

             Fi
+  

=  puFi + pdF(ihD) + poF(ihC) .       (A.13) 

 

Inserting the j and r terms for the C and D MW shifts gives 

          Fi
+  

=  puFi + pdF[ih(jd+rd)h] + poF[ih(jc+rc)h] .     (A.14) 

 

Expanding the shifted terms in the above equation using Equation A.12 produces 

 

   Fi
+  

=    puFi  

      + pd[(½rd
2 
+ ½rd)Fij

d
1 +  (1  rd

2
)Fij

d
  + (½rd

2
 - ½rd)Fij

d
+1] 

      + po[(½rc
2 
+ ½rc)Fij

c
1  +  (1  rc

2
)Fij

c
  + (½rc

2
 - ½rc)Fij

c
+1]  

for integers  jc  0 and jd  0 and reals 0  rc  1 and 0  rd  1 .        (A.15) 

 

Equation B.15 is equivalent to Equation 3.14, which completes the derivation. 
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Appendix B 

Fortran Subroutines 

Sparse Matrix Solver 

C 'MATRIX SYMMETRICAL SOLUTION' TECHNIQUE FOR N SPARSE EQUATIONS AS 

C DESCRIBED BY K. ZOLLENKOPF IN HIS PAPER 'BASIC COMPUTATIONAL TECHNIQUES' 

C APPEARING IN THE BOOK TITLED 'LARGE SPARSE SETS OF LINEAR EQUATIONS' AND 

C EDITED BY J. K. REID.  ACADEMIC PRESS, 1971, PAGES 75-96. 

C 

C THE USER IS RESPONSIBLE FOR DIMENSIONING THE FOLLOWING ARRAYS IN THE 

C MAIN PROGRAM: LCOL(N),NOZE(N),NSEQ(N),V(N),ITAG(M),LNXT(M),CE(M) 

C WHERE N IS THE NUMBER OF EQUATIONS AND M IS ALWAYS GREATER THAN THE 

C NUMBER OF NONZERO ELEMENTS IN THE MATRIX.  M REQUIREMENTS VARY 

C DEPENDING ON THE NATURE OF THE SPARSITY. 

C 

C THEN TO USE IT: 

C     CALL MATSS(0)     FOR SIMULATION, ORDERING, AND REDUCTION 

C     CALL MATSS(1)     FOR THE SOLUTION THAT IS RETURNED IN ARRAY V. 

C                       THE INPUT DRIVING VECTORS WERE ENTERED IN V ALSO. 

C     NOTE THAT (0)     NEED BE PERFORMED ONLY ONCE FOR ANY NO. OF SOLUTIONS 

C THE INITIAL VALUE FOR M FOR (0)     SHOULD BE THE USER'S ARRAY SIZE IN 

C THE MAIN PROGRAM DIMENSION STATEMENT.  AFTER THE FIRST PASS THROUGH 

C MATSS, THE VALUE OF M IS THE AMOUNT ACTUALLY USED. 

C THE USER MUST ALSO PREPARE THE FOLLOWING ARRAYS: 

C     V       CONTAINS THE INDEPENDENT DRIVING VECTORS 

C     CE      CONTAINS THE NONZERO MATRIX ELEMENTS WHILE A SWEEP IS 

C             MADE FROM LEFT TO RIGHT THROUGH EACH EQUATION 

C     ITAG    RECORDS THE COLUMN POSITION OF EACH CE ELEMENT 

C     NOZE    RECORDS THE NUMBER OF CE ELEMENTS PER EQUATION 

C 

SUBROUTINE MATSS(ISOL) 

C ISOL=0 TO BUILD AND FACTOR THE SPARSE MATRIXES 

C ISOL=1 TO SOLVE THE MATRIX, AND CAN BE REPEATED ANY NUMBER OF TIMES 

      COMPLEX V(1000),CE(5000),CD,CF 

      INTEGER NOZE(1000),NSEQ(1000),LCOL(1000),ITAG(5000),LNXT(5000) 

      COMMON N,M,MAXM,NOZE,NSEQ,LCOL,ITAG,LNXT,V,CE 

      IF(ISOL.EQ.1) GOTO 1 

C DEFINE THE MAXIMUM ARRAY SIZE OF CE, ITAG, AND LNXT 

      M=5000 

      MAXM=0 

C BUILD LNXT ARRAY 

      DO 2 I=1,M 

    2 LNXT(I)=I+1 

      J=0 

      DO 3 I=1,N 

      J=J+NOZE(I) 

    3 LNXT(J)=0 

C SET LAST LNXT AND UNUSED CE TO ZERO 

      LNXT(M)=0 

      LF=J+1 

      DO 4 J=LF,M 

    4 CE(J)=0. 

C BUILD LCOL ARRAY 

      J=1 

      DO 5 I=1,N 

      LCOL(I)=J 

    5 J=J+NOZE(I) 
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C BUILD NSEQ ARRAY 

      DO 6 I=1,N 

    6 NSEQ(I)=I 

C BEGIN SIMULATION AND ORDERING, REFERENCE PAGE 89 

      N1=N-1 

      DO 17 J=1,N1 

      K=NSEQ(J) 

      MIN=NOZE(K) 

      M=J 

      L=J+1 

      DO 16 I=L,N 

      K=NSEQ(I) 

      IF(NOZE(K).GE.MIN) GOTO 16 

      MIN=NOZE(K) 

      M=I 

   16 CONTINUE 

      KP=NSEQ(M) 

      NSEQ(M)=NSEQ(J) 

      NSEQ(J)=KP 

      LK=LCOL(KP) 

   15 K=ITAG(LK) 

      IF(K.EQ.KP) GOTO 11 

      LA=0 

      LI=LCOL(KP) 

      IP=ITAG(LI) 

      L=LCOL(K) 

      I=ITAG(L) 

   10 IF(I-IP) 7,8,9 

    7 LA=L 

      L=LNXT(L) 

      I=N+1 

      IF(L.GT.0) I=ITAG(L) 

      GOTO 10 

    8 IF(I.EQ.KP) GOTO 12 

      LA=L 

      L=LNXT(L) 

      GOTO 13 

   12 LN=LNXT(L) 

      IF(LA.GT.0) THEN 

        LNXT(LA)=LN 

        ELSE 

        LCOL(K)=LN 

        ENDIF 

      LNXT(L)=LF 

      LF=L 

      IF(LF.GT.MAXM) MAXM=LF 

      CE(L)=0. 

      NOZE(K)=NOZE(K)-1 

      L=LN 

   13 I=N+1 

      IF(L.GT.0) I=ITAG(L) 

      GOTO 14 

    9 IF(LF.LE.0) THEN 

        WRITE(*,*) 'MATRIX SPACE IS EXHAUSTED' 

        STOP 

        ENDIF 

      LN=LF 

      IF(LA.GT.0) THEN 

        LNXT(LA)=LN 

        ELSE 

        LCOL(K)=LN 

        ENDIF 
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      LF=LNXT(LN) 

      LNXT(LN)=L 

      ITAG(LN)=IP 

      NOZE(K)=NOZE(K)+1 

      LA=LN 

   14 LI=LNXT(LI) 

      IF(LI.GT.0) THEN 

        IP=ITAG(LI) 

        GOTO 10 

        ENDIF 

   11 LK=LNXT(LK) 

      IF(LK.GT.0) GOTO 15 

   17 CONTINUE 

C BEGIN REDUCTION, REFERENCE PAGE 90 

      DO 18 J=1,N 

      KP=NSEQ(J) 

      LK=LCOL(KP) 

      LP=LF 

   19 IF(LP.LE.0) THEN 

        WRITE(*,*)'MATRIX SPACE IS EXHAUSTED' 

        STOP 

        ENDIF 

      K=ITAG(LK) 

      IF(K.EQ.KP) THEN 

        CD=1./CE(LK) 

        CE(LK)=CD 

        ELSE 

        CE(LP)=CE(LK) 

        ENDIF 

      LK=LNXT(LK) 

      IF(LK.GT.0) THEN 

        LP=LNXT(LP) 

        GOTO 19 

        ENDIF 

      LK=LCOL(KP) 

   20 K=ITAG(LK) 

      IF(K.EQ.KP) GOTO 25 

      CF=CD*CE(LK) 

      CE(LK)=-CF 

      LP=LF 

      LI=LCOL(KP) 

      IP=ITAG(LI) 

      L=LCOL(K) 

      I=ITAG(L) 

   26 IF(I-IP) 22,23,24 

   22 L=LNXT(L) 

      IF(L.LE.0) GOTO 25 

      I=ITAG(L) 

      GOTO 26 

   23 CE(L)=CE(L)-CF*CE(LP) 

      L=LNXT(L) 

      IF(L.LE.0) GOTO 25 

      I=ITAG(L) 

   24 LI=LNXT(LI) 

      IF(LI.LE.0) GOTO 25 

      IP=ITAG(LI) 

      LP=LNXT(LP) 

      GOTO 26 

   25 LK=LNXT(LK) 

      IF(LK.GT.0) GOTO 20 

   18 CONTINUE 

      RETURN 
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C BEGIN DIRECT SOLUTION, REFERENCE PAGE 91 

    1 M=0 

      DO 27 J=1,N 

      K=NSEQ(J) 

      CF=V(K) 

      V(K)=0. 

      L=LCOL(K) 

   28 I=ITAG(L) 

      V(I)=V(I)+CE(L)*CF 

      L=LNXT(L) 

      M=M+1 

      IF(L.GT.0) GOTO 28 

   27 CONTINUE 

      J=N 

   29 IF(J.LE.1) RETURN 

      J=J-1 

      K=NSEQ(J) 

      CD=V(K) 

      L=LCOL(K) 

   30 I=ITAG(L) 

      IF(I.NE.K) CD=CD+CE(L)*V(I) 

      L=LNXT(L) 

      IF(L.GT.0) GOTO 30 

      V(K)=CD 

      GOTO 29 

      END 
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PQ Convolution Routine 

      SUBROUTINE CONVOL(C,Q,X1,X2,K) 

      PARAMETER (MPQ=360) 

*   Convolution of C MW into F(i=x/H+B), P state is scaled but not shifted, 

*   down state (prob=Q) is scaled and shifted, +C is right, -C is left. 

*   X1 and X2 are min and max range of X (real number line) respectively 

*   To perform a simple two state convolution set K=0 

*   To perform multi-state convolution, the first call of convol K=1, 

*   then subsequent calls will have K=2, and the last call has K=3. 

*   For K=0 the convolution of P and Q states is completed in this one CALL. 

*   For K=1 and 2, Q adds on to F(i), the Q, C shifted states; C can be + or 

-. 

*   For K=3, the P*F3(i) nonshifted terms are also added as a final step. 

      COMMON /EIGHT/F(MPQ),F3(MPQ+5),H,B 

      P=1.-Q 

      IF(K.LE.1) THEN 

        DO 8 I=1,MPQ 

        F3(I)=F(I) 

        F(I)=0. 

   8    CONTINUE 

        F3(MPQ+1)=X1 

        F3(MPQ+2)=X2 

        F3(MPQ+3)=0. 

        F3(MPQ+4)=0. 

        F3(MPQ+5)=Q 

      ELSE 

        F3(MPQ+5)=F3(MPQ+5)+Q 

        P=1.-F3(MPQ+5) 

      ENDIF 

      IF(C.LT.F3(MPQ+3)) F3(MPQ+3)=C 

      IF(C.GT.F3(MPQ+4)) F3(MPQ+4)=C 

      X1=F3(MPQ+1)+F3(MPQ+3) 

      X2=F3(MPQ+2)+F3(MPQ+4) 

      N2=X2/H+B+2 

      IF(N2.GT.MPQ) N2=MPQ 

      R=C/H 

      J=R 

      R=R-J 

      IF(C.LT.0.) THEN 

        J=-J 

        R=-R 

        R=1-R 

      ENDIF 

      A0=Q*R*(R+1)/2 

      A1=Q*(1-R**2) 

      A2=Q*R*(R-1)/2 

      IF(C.LT.0.) GOTO 4 

* finish the convolution of positive C 

      J=N2-J 

      IF(J+1.GT.MPQ) THEN 

        Y1=0. 

        GOTO 2 

      ENDIF 

      IF(J+1.LT.1) THEN 

        Y1=1. 

        GOTO 2 

      ENDIF 

      Y1=F3(J+1) 

   2  IF(J.GT.MPQ) THEN 

        Y0=0. 
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        GOTO 3 

      ENDIF 

      IF(J.LT.1) THEN 

        Y0=1. 

        GOTO 3 

      ENDIF 

      Y0=F3(J) 

   3  DO 1 I=N2,1,-1 

      Y2=Y1 

      Y1=Y0 

      J=J-1 

      IF(J.GT.MPQ) THEN 

        Y0=0. 

        GOTO 9 

      ENDIF 

      IF(J.LT.1) THEN 

        Y0=1. 

        GOTO 9 

      ENDIF 

      Y0=F3(J) 

   9  F(I) = A2*Y2 + A1*Y1 + A0*Y0 + F(I) 

      IF(K.EQ.0.OR.K.EQ.3) F(I) = F(I) + P*F3(I) 

   1  CONTINUE 

      RETURN 

* finish the convolution of negative C 

   4  J=1+J 

      Y1=0. 

      IF(J.LE.MPQ) Y1=F3(J) 

      J=J+1 

      Y2=0. 

      IF(J.LE.MPQ) Y2=F3(J) 

      DO 7 I=1,N2 

      Y0=Y1 

      Y1=Y2 

      J=J+1 

      Y2=0. 

      IF(J.LE.MPQ) Y2=F3(J) 

      F(I) = A2*Y2 + A1*Y1 + A0*Y0 + F(I) 

      IF(K.EQ.0.OR.K.EQ.3) F(I) = F(I) + P*F3(I) 

   7  CONTINUE 

      RETURN 

      END 
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PQ Evaluate F(x) 

* Evaluate F(x) at point x=D 

      FUNCTION FPQ(D) 

      PARAMETER (MPQ=360) 

      COMMON /EIGHT/F(MPQ),F3(MPQ+5),H,B 

      R=D/H+B 

      J=R 

      R=R-J 

      IF(R.GT.0.) THEN 

        J=J+1 

        R=1-R 

      ELSE 

        R=-R 

      ENDIF 

      IF(J.LT.MPQ) THEN 

        Y0=1. 

        Y1=1. 

        Y2=1. 

        IF(J-1.GE.1) Y0=F(J-1) 

        IF(J.  GE.1) Y1=F(J) 

        IF(J+1.GE.1) Y2=F(J+1) 

      ELSE 

        Y0=0. 

        Y1=0. 

        Y2=0. 

        IF(J-1.LE.MPQ) Y0=F(J-1) 

        IF(J  .LE.MPQ) Y1=F(J) 

        IF(J+1.LE.MPQ) Y2=F(J+1) 

      ENDIF 

      A0=R*(R+1.)/2. 

      A1=1-R**2 

      A2=R*(R-1.)/2. 

      FPQ = A0*Y0 + A1*Y1 + A2*Y2 

      RETURN 

      END 
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PQ EUE Routine 

* Integration of F(x) from D1<x<D2; D1 and D2 can be any real number 0<D1<D2 
      FUNCTION AINTGR(D1,D2) 
      PARAMETER (MPQ=360) 
      COMMON /EIGHT/F(MPQ),F3(MPQ+5),H,B 
      IF(D1.LT.0.OR.D2.LT.D1) THEN 
        AINTGR=0. 
        RETURN 
      ENDIF 
      D=D2 
      ID=2 
  2   R=D/H+B 
      J=R 
      R=R-J 
      J=J+1 
      R=1.-R 
      AINTGR=0. 
      IF(J.LE.MPQ) THEN 
        DO 1 I=MPQ,J,-1 
        IF(I.GT.0) THEN 
          AINTGR=AINTGR+F(I) 
        ELSE 
          AINTGR=AINTGR+1. 
        ENDIF 
  1     CONTINUE 
      ENDIF 
      IF(J.LT.MPQ) THEN 
        Y0=1. 
        Y1=1. 
        Y2=1. 
        IF(J-1.GE.1) Y0=F(J-1) 
        IF(J.  GE.1) Y1=F(J) 
        IF(J+1.GE.1) Y2=F(J+1) 
      ELSE 
        Y0=0. 
        Y1=0. 
        Y2=0. 
        IF(J-1.LE.MPQ) Y0=F(J-1) 
        IF(J  .LE.MPQ) Y1=F(J) 
        IF(J+1.LE.MPQ) Y2=F(J+1) 
      ENDIF 
      AINTGR = Y2/12. -Y1*7/12. +R**3/6.*(Y0 -2*Y1 +Y2) + 
     &  R**2/4.*(Y0 -Y2) +R*Y1 + AINTGR 
      AINTGR=AINTGR * H 
      IF(ID.EQ.2) THEN 
        A2=AINTGR 
        D=D1 
        ID=1 
        GOTO 2 
      ENDIF 
      IF(AINTGR.LT.A2.OR.H.LT.0.) THEN 
        AINTGR=0. 
        RETURN 
      ENDIF 
      AINTGR=AINTGR-A2 
      RETURN 

      END 
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